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Abstract — we have calculated photoionization cross 
section of Barium (Ba) from 5s state in photon energy 
range 140 –270 eV in the context of experimental data 
and theoretical results. We are using time-dependent 
response method within density functional theory. The 
present result is encouraging and close to the 
experimental result.  
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1. INTRODUCTION  
Accurate calculation of photoionization cross-sections 
of atoms and ions are useful in a variety of 
investigations in plasma physics and atomic physics. It 
is particularly useful in the context of flash lamp photo 
pumping schemes for x-ray lasers. Most of the existing 
calculations of photoionization cross-sections were 
done using the single electron or the independent 
particle model (IPM). In this model, the energy-levels, 
and wave functions of the atom or ion are first 
calculated using the Hartree-Fock (HF) method. The 
interaction of the incident electromagnetic radiation 
with the atom (or ion) is treated via the first order 
perturbation theory. Comparison of experimental data 
with the IPM calculations shows that for some simple 
systems such as a neutral few electron atom, there is 
qualitative and sometimes quantitative agreement. 
However, for many electron atoms and ions with a 
large number of bound electrons, substantial 
discrepancies are found between experimental and 
IPM-data [1]. In our present work, we used the time-
dependent linear response approximation within the 
framework of the relativistic density functional method 
(DFM) [2, 3, 4] to treat the problem of photoionization. 
This method incorporates certain advantages over the 
HF-method. The HF-method is non-local and 
computationally very elaborate, whereas in the density 
functional method, one deals with a set of local 
equations only. This leads to computational simplicity. 

On the other hand, it is well known from extensive 
application of the density functional method, that fairly 
accurate atomic energy levels, wave functions, etc. are 
obtained. The computational simplicity is even more 
apparent in the case of relativistic DFM verses 
relativistic HF-methods. In the DFM, correlation effects 
of the bound electrons in the atom are accounted for in 
a simple way via the correlation potential. The Hartree-
Fock method, on the other hand, does not take into 
account electron correlation, although it accounts for 
non-local exchange effects appropriately. The 
independent particle method does not take into 
account the polarization effect of the atom brought 
about by the incident time-varying radiation field. In 
the linear response method within the density 
functional method, this is treated adequately – as will 
be seen from comparison with the experimental data. 
In most experimental situations, the incident radiation 
(from synchrotron sources or lasers) has field 
strengths small compared to the atomic field strengths. 
For those experimental conditions, the present model 
based on linear response is adequate and useful. 
Calculations of photoionization and photo excitation 
cross-sections and rates have a number of applications. 
For the photo pumping scheme for x-ray lasers, these 
processes play a crucial role in contributing to a 
population inversion of excited ionic levels. As another 
example, computation of opacities of plasmas for 
diagnostic and target response effects require these 
data as input. In order to model the radiation spectra 
from hot plasma (via detailed configuration rate 
equation technique, for example), the photoionization 
and photo excitation data are required in addition to 
other bound-bound, bound-free and free-free 
processes. Accurate calculations are also necessary for 
interpreting experimentally available data on cross 
sections. In view of these different applications, there is 
a need for relativistic modeling of these processes in 
order to generate accurate data over a wide range of 
photon energy for a variety of atoms and ions. 
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 2. THEORY 
The first part of the calculation is to generate the 
energy-level spectrum and the wave functions of the 
particular atom or ion of specific configuration. This is 
done by using the local density functional method. In 
order to treat many-electron atoms (with high Z) 
appropriately, relativistic DFM equations were used. In 
this method, the following set of equations was solved 
self-consistently: 
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In the above,  rρ  is the electronic charge density of 

the atom, α and β are the Dirac matrices,
if
’s are the 

integral occupation factors corresponding to the 
number of electrons in each state  riψ

 with 

corresponding energy eigenvalue 
iE .The atomic 

potential  ru  contains, in addition to the nuclear and 

the electrostatic Hartree term, a contribution arising 
from the electron exchange and correlation effects. Let 
us note that the use of integer occupation factors

if ’s 

for the given configuration distinguishes this model 
from the “average atom model” where the occupation 
factors are taken to be those given by the statistical 
Fermi distribution function. The orbital functions are 
four-component spinors. They are split into major and 
minor components: 
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where A and B are major and minor components of the 

radial functions and   r
jlm

  and  r
mlj 

  are two-

component Pauli spinors with the indicated numbers. 
The various quantum numbers are related by  
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are:

 
  
































B

A

rKcscEu

cscEurK

B

A

dr

d

2

2

   

      (6) 

In equation (2), 
XC

  is the exchange-correlation 

energy of the electrons. In actual calculation, 
Gunnarsson-Lundquist (G-L) form [3] for exchange-
correlation energy and potential was used. It is well 
known that reliable atomic data is obtained from the 
use of G-L exchange-correlation. Equation (1)-(6) are 
solved numerically to self-consistency to obtain the 

wave functions iψ ’s, the binding energies of each 

orbital iE , the atomic charge density  rρ  and the 

self-consistent potential  ru . Now consider the effect 

of an incident time-varying radiation field 

  ti
eEtE


0  on the atom. It induces a time-

dependent atomic density deviation,  t,δ rρ , causing 

a time-dependent polarization effect. For the linear 
response method used here, it is convenient to work 
with the Fourier transform: 
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The net induced density due to the external plus the 
induced potential is  
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where the induced potential is given by  
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The response function is given by   
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and thus involves the wave functions and energy levels 
of the atoms. The Green’s functions are solutions of the 
inhomogeneous Dirac equation 
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In actual calculation, angular decomposition of the 
Green’s function in terms of spherical harmonics is 
done and the radial part is treated separately as 
follows: The Green’s function G in equation (11) has 16 
components, which are represented in matrix form  
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The angular decomposition of various terms are  
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The radial part  EG rr ,
  are solutions of the radial 

inhomogeneous Dirac equation  
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  rjl

1v  and  rjl

2v  are major and minor component radial 

functions that are real and regular at r = 0.  rjl

1v  and 

 rjl

2v  major and minor comment radial functions 

which (for E > c2) are complex and obey outgoing wave 
boundary conditions at r = ∞. The phase for 1v jl

 and 2v jl
  

are real and decay exponentially at large radii.  
With the above representations, the polarizability 
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when rr  , and r and r  are interchanged on the 
right  side of equation (14) when  rr  . The index i 
stands for the quantum numbers (n, l1, j1, s1,) of a 
bound state and fi fore the occupation factors. The 
summation is over all indices except I and over both + 
ω and – ω. For the case of –ω, the complex conjugates 
of all outgoing waves in equation (14) are to be used. 
Angular momentum coupling coefficients are 
expressed in terms of Wigner 3j and 6j symbols.      

The frequency dependent polarizability  α  is the 

ratio of the induced dipole moment to the external 
field: 
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Note that  α  like  ,δ rρ  is complex. The induced 

density deviation (and also the corresponding induced 
potential) can have a phase difference with respect to 

that of the applied external field. Once  α  is 

determined, the photo absorption cross-section    

of the atom is obtained form:    
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Partial cross section  
In order to see the connection with the IPA-model, 
consider the partial cross-section due to 

photoionization from a specific bound state  riψ  to a 

final continuum state  r
f

ψ . 

The initial atomic state is represented as  
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and the final continuum state with wave function K and 
energy ε as  
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The complex coefficients Al’s are found by requiring 

 r
f

ψ  behaving asymptotically as an incident plane 

wave plus a spherical wave. Then the partial cross-
section σnl  is shown to be  
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where 000 lll   is a Clebsch-Gordan coefficient. 

In (19), VSCF (r, ω) is a frequency dependent complex 
self-consistent potential.  
 

3. RESULTS AND DISCUSSION 
Fig.1 shows photoionization of Barium (Ba) in the 
photon energy range 140 – 270 eV. This energy region 
was selected for the present study in the context of 
recent experimental results [5-6] and theoretical 
calculations [5-6] for Barium in this energy range. In 
the relativistic random phase approximation (RRPA) 
and relativistic random phase approximation with 
relaxation (RRPA-R) [7] theoretical result 
disagreement of the experimental data suggest re-
examination. So that we applied DFM which includes 
correlation and polarization along with relativistic 
effects, our present theoretical result (length form) 
considerable agreement in intermediate energy and 
give better agreement in higher energy range, but little 
disagreement in lower photon energy range of 
experimental data [7-8].       
 

4. CONCLUSION 
It is demonstrated that the time-dependent linear 
response method within the framework of local 
relativistic density functional theory can provide 
reliable atomic data for various atoms and ions of 
experimental interest.  

 
Fig. 1. photoionization of Barium (Ba),  
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            Experimental Data : Whitfield, Wehlitz  

and  Dolmatov [Ref.5]  
 

RRPA : Ganesan et al [Ref. 7] 
 

RRPA: Ganesan et al [Ref. 7] 
 

        GRAPE & HF : Whitfield, Wehlitz  
and  Dolmatov [Ref.6] 

 
RRPA : Ganesan et al [Ref.7] 

 
 RRPA: Ganesan et al [Ref.7] 

 
    DFM [2,3,4] : Present Result  
                                             (Length form)  

This model is particularly useful in those situations 
where conventional independent particle models fail to 
provide accurate data. The mechanism of time-
dependent polarization of the atom is seen to be 
important in describing the observed results. As a 
practical point, the computer code based on the time-
dependent model is fast and efficient, capable of 
generating a large number of data in a short time (for 
example , cross-sections for 10 photon energies for a 
medium-Z atom takes about 3 minutes of c. p. u. times 
on a Cray-XMP computer). The present method is 
capable of treating large complex atoms  with high-Z 
for which relativistic effects are important. 
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