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Abstract – A generalized fuzzy topological space called 

countable fuzzy topological space has already been 

introduced by the authors. The generalization has 

been performed by relaxing the criterion of 

preservation of arbitrary supremum of fuzzy topology 

to countable supremum. In this paper the notion of 

fuzzy compactness called c-compactness has been 

initiated and various properties are studied. Other 

related concepts like Lindelöf property, countable 

compactness are defined and studied in the countable 

fuzzy topological space. 

 

Keywords – c-compact space, c-Lindelöf space, 

countable fuzzy topology, Fuzzy topology. 

 

1. INTRODUCTION AND PRELIMINARIES
 

Soon after the historic paper of Zadeh [26], many 

mathematicians started to use the fuzzy sets in various 

branches of pure and applied Mathematics. One such 

application is to generalize the different topological 

concepts in fuzzy environment. In 1968, C. L. Chang [6] 

first defined fuzzy topological space using fuzzy sets and 

later on in 1976, R. Lowen [16], presented an alternative 

and more general definition of fuzzy topological space. 

Again, some generalizations of fuzzy topological space 

viz. smooth topological space [21], fuzzy supra 

topological space [1], fuzzy minimal space [2], fuzzy infy 

topological space [22] are also in literature. In [4], [23], 

the authors introduced the concept of countable fuzzy 

topological space as another generalization of fuzzy 

topological space and studied some properties of it. A 

collection of fuzzy sets F on a universe X forms a 

countable fuzzy topology if in the definition of a fuzzy 

topology; the condition of arbitrary supremum is relaxed 

to countable supremum. The countable fuzzy topological 

space is generalized enough to include fuzzy topological 

space. At the same time the relaxation of the stringent 

condition of preservation of arbitrary suprema to 

countable suprema opens up the possibility of having new 

properties which are absent in fuzzy topological space. 

For example, the only if part of theorem 2.6 is valid for 

compactness in countable fuzzy topological space but we 

believe that the same is not valid in fuzzy topological 

space. Again, this generalization of fuzzy topological 

space is stronger than that of fuzzy minimal space. 

Further, we have seen in [5],[2],[8],[9] that fuzzy 

topological space and fuzzy minimal space may be 

relevant to quantum particle physics in connection with 

string theory and 

 theory, so we believe that this new 

generalized fuzzy space will also be relevant for above 

studies.  

In this paper, the concept of compactness in countable 

fuzzy topological space has been introduced and studied. 

The motivation of the paper is to explore whether the 

properties of fuzzy compactness in fuzzy minimal 

topological structure obtained by Alimohammady and 

Roohi [3] are still preserved under the countable fuzzy 

topological space being considered here, where 

compactness is defined in the usual way. The results 

obtained here actually generalize almost all the properties 

of compactness in fuzzy minimal space of [3]. This 

justifies the importance of present study.    

Before proceeding further, we present some of the 

concepts and results obtained in [23] for ready reference 

which will be used in the study followed. 

Definition 1.1: A family C of fuzzy sets in X is said to 

form a countable fuzzy topology if  

i) r1XC for any rI. 

ii) For countable family {i : iN} of fuzzy 

subsets of C, ⋁i i C. 

iii) For any two fuzzy subset  and  of C, 

⋀C.  

The space (X, C) is called countable fuzzy topological 

space. Every member of C is called c-open set of X and 

complement of a c-open set is called c-closed set. 

Definition 1.2: We set the definition of interior and 

closure of a fuzzy set  in countable fuzzy topology 

denoted by c-Int() and c-Cl() respectively as follows: 

c-Int() = ⋁{:   , C} and c-Cl() = ⋀{:   , 

(1)C}. 

Remark 1.3: It should be noted here that in a countable 

fuzzy topological space, arbitrary union of c-open sets 

may not be c-open [4]. Thus c-interior of a fuzzy set in 

(X, C) may not be c-open and dually c-closure of a fuzzy 

set in (X, C) may not be c-closed. 

Proposition 1.4: For any two fuzzy sets  and   

i) c-Int()   and c-Int() = , if  is a c-open set. 

Specially c-Int(r1X) = r1X  for all rI. 

ii)   c-Cl() and  = c-Cl(), if  is a fuzzy c-closed set. 

Specially c-Cl(r1X) = r1X  for all rI. 

iii)  c-Int()  c-Int() and  c-Cl()  c-Cl(), if   . 

iv)  c-Int(⋀) = c-Int()⋀ c-Int() and c-Int()⋁ c-Int()  

c-Int(⋁). 

v) c-Cl(⋁) = c-Cl()⋁ c-Cl() and c-Cl(⋀)  c-

Cl()⋀ c-Cl(). 

vi) c-Int(c-Int()) = c-Int() and c-Cl(c-Cl()) = c-Cl(). 

vii) 1 c-Cl() = c-Int(1 ) and 1 c-Int() = c-Cl(1 ). 

Definition 1.5: Let (X, C) and (X, D) be two countable 

fuzzy topological spaces. Then a fuzzy function f: (X, C) 
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 (X, D) is said to be countable fuzzy continuous 

(briefly fuzzy c-continuous) if f
1

()C for any D. 

Theorem 1.6: Consider the following properties for a 

fuzzy function f: (X, C) (Y, D) between two countable 

fuzzy topological spaces. 

(a) f is fuzzy c-continuous function. 

(b) f
1

() is a fuzzy c-closed set in (X, C) for each 

fuzzy c-closed set (Y, D). 

(c) c-Cl(f
1

())  f
1

(c-Cl()) for each I
Y
. 

(d) f(c-Cl())  c-Cl(f()) for any I
X
. 

(e) f
1

(c-Int())  c-Int(f
1

())for each I
Y
. 

        Then (a)  (b)  (c)  (d)  (e).  

 

2. FUZZY C-COMPACT SPACE 
After the discovery of fuzzy sets, several authors have 

generalized different topological concepts to fuzzy 

topological space. In this regard, the concept of 

compactness and some of its weaker and stronger forms 

occupies a very important place in fuzzy topology. For 

example we refer to [3]-[7]. 

For the study ahead, once again we recall the definition of 

countable fuzzy topology as in [4]. 

Definition 2.1: A family C of fuzzy sets in X is said to 

form a countable fuzzy topology if  

i) 01X, 1X C. 

ii) For countable family {i: iN} of fuzzy subsets of 

C, ⋁i i C. 

iii)  For any two fuzzy subset  and  of C, ⋀C.  

The space (X, C) is called countable fuzzy topological 

space. 

It can be easily verified that the properties of countable 

fuzzy topology already studied in [23] which are 

mentioned in section-1 are also valid with the present 

setting. 

Definition 2.2: suppose (X, C) is a countable fuzzy 

topological space and B = {j: jJ} is a family of fuzzy 

sets in X. The family B is called a fuzzy cover of X if ⋁j 

j = 1X. Also B is called a fuzzy cover of a fuzzy set  in 

X if   ⋁j j. It is a fuzzy c-open cover if each j is fuzzy 

c-open. A fuzzy subcover of B is a subfamily of B which 

is also a fuzzy cover. 

Definition 2.3: Consider (X, C) is a countable fuzzy 

topological space. A fuzzy set  in X is said to be fuzzy 

c-compact if every fuzzy c-open cover B = {j: jJ} of  

has a finite fuzzy c-open subcover. Also Y  X is called 

is called fuzzy c-compact if 1Y is a fuzzy c-compact set. 

Remark 2.4: It may be noticed that, the restriction of 

countable fuzzy topological space requiring 01X, and 1X 

only to be members of topology is necessary here, 

because 1X = ⋁r(0,1) r1X but this identity is not valid for 

finite choices r(0, 1), which implies that if we take the 

definition of countable fuzzy topological space as in [23]  

incorporating all constant functions in the topology then 

there is no fuzzy c-compact space. 

Definition 2.5: A family {j: jJ} of fuzzy sets in X has 

finite intersection property if each finite subfamily of {j: 

jJ} has non-empty intersection (infimum), i.e. ⋀ k  
01X, for kK, where K is a finite subset of J.  

Theorem 2.6: A countable fuzzy topological space (X, C) 

is fuzzy c-compact if and only if ⋀j j  01X for any 

family {j: jJ} of fuzzy c-closed sets in X which has the 

finite intersection property. 

Proof: Let the space (X, C) be fuzzy c-compact and 

suppose {j: jJ} is a family of fuzzy c-closed subsets of 

X having finite intersection property. If possible let ⋀jj 

= 01X. Then ⋁j (1j) = 1X which implies ⋁   
  (1  

) = 

1X, which again implies ⋀   
    

= 01X which is a 

contradiction. Hence, ⋀j j  01X. 

Conversely, suppose {j: jJ} is a fuzzy open cover of X 

and if possible, let       ⋁   
  

  
 1X for any choice j1, 

j2,...,jnJ. Then, we have ⋀   
 (1

  
)  01X. Now, by our 

assumption ⋀j(1j)  01X, i.e. ⋁j j  1X, which is a 

contradiction and thus ⋁   
  

  
= 1X  for a infinite 

subcollection   
  

: i = 1,2,…, n} of {j: jJ}. So {j: 

jJ} has a finite subcover and hence the space is 

compact. 

Now we obtain a characterization of fuzzy c-compactness 

using filter of c-closed set. With this aim, we recall the 

important concept of filter first for the sake of 

thoroughness. 

From set theory, we know that, if a family L  P(X) be 

closed under finite intersection, then a subcollection F of 

L is called a filter if (i) F (ii) A, BF implies ABF 

(iii) if AF and BL be such that B  A then BF. 

Again, we recall that for any subfamily B of P(X) having 

the property that the intersection of any finite number of 

members of B is non-empty, i.e. having finite intersection 

property, there is a unique smallest filter F containing B 

which is called the filter generated by B (subbase). If B is 

also closed under finite intersection then F takes the 

simple form F = {A  X:  BB, B  A} and B is called 

a filter base for F [7]. 

Theorem 2.7: A countable fuzzy topological space (X, C) 

is fuzzy c-compact if and only if ⋀B c-Cl()  01X for 

every fuzzy filter subbase B in X. 

Proof: Let us assume that ⋀B c-Cl()  01X for every 

fuzzy filter subbase B in X. Suppose {j: jJ} is a family 

of fuzzy c-closed sets which satisfy the finite intersection 

property. It can be easily seen that {j: jJ} is a fuzzy 

filter subbase for X. Then by assumption ⋀j j = ⋀j c-

Cl(j)  01X, and thus by theorem 2.6, X is fuzzy c-

compact. 

Conversely, let X is fuzzy c-compact and there is a fuzzy 

filter subbase {j: jJ} such that     ⋀j c-Cl(j) = 01X. 
Now, from the definition of c-closure, we can write c-

Cl(j) = ⋀k (j,k), where (j,k)’s are fuzzy c-closed subsets 

and j  (j,k) for every k in the index set K. Then from the 

assumption ⋀j ⋀k (j,k) = 01X and thus ⋁j ⋁k (1 (j,k)) 
=1X. Again, since X is fuzzy c-compact, we have ⋁   

  

(1         
) = 1X for a finite subcollection {(1

        
 : i 



 Current Trends in Technology and Science  
Volume : 1, Issue : 2 , (Sept.-2012) ISSN : 2279-0535 

  

Copyright © 2012 CTTS.IN, All right reserved 

76 

= 1,2,... n} of {(1(j,k)): jJ and kK} and so          

⋀   
 

        
=01X.                                 

Since c-Cl 
  

) = ⋀k 
       

  
        

 for each i = i,2, ..., 

n. So ⋀   
  c-Cl 

  
) = 01X. Therefore, {j: jJ} does not 

have the finite intersection property which is a 

contradiction. Hence, ⋀j c-Cl(j)  01X. 

Theorem 2.8: Suppose f: (X, C)(Y, D) is fuzzy c-

continuous. Then, if  is fuzzy c-compact in X then f() 

is also fuzzy c-compact. 

Proof: Let {j: jJ} be a family of fuzzy c-open sets in Y 

such that f()  ⋁j j. Again, we have  

    f
1

(f())  f
1

(⋁j j) = ⋁j(f
1

 (j)), jJ. 

Now, since f is fuzzy c-continuous and  is fuzzy c-

compact, so there exists j1, j2, ..., jnJ such that   ⋁   
  

(f1 
  

); i.e.   f1 ⋁   
  

  
)). Consequently, f() 

f(f1 ⋁   
  

  
)) ⋁   

  
  

), and hence f() is fuzzy c-

compact.    

Theorem 2.9: Suppose (X, C) is a fuzzy c-compact space 

and f: (X, C)(Y, D) is a surjective fuzzy c-continuous. 

Then Y is fuzzy c-compact. 

Proof: Since f is onto, we have f(1X) = 1Y. Now applying 

theorem 2.8, we get the required result. 

Definition 2.10: A fuzzy function f: (X, C)(Y, D) is 

called fuzzy c-open map if f()D for each C for two 

countable fuzzy topological space (X, C) and (Y, D).  

 Definition 2.11: A fuzzy function f: (X, C)(Y, D) is 

called fuzzy c-quasi open if f()D implies C for two 

countable fuzzy topological space (X, C) and (Y, D). 

Corollary 2.12: suppose f: (X, C)(Y, D) is onto and 

fuzzy c-quasi open. Then Y is fuzzy c-compact whenever 

X is fuzzy c-compact. 

Proof: It is easy to see that f is fuzzy c-continuous and 

onto. Now, applying theorem 2.8, we may obtain the 

required result.  

In [23], authors introduced the concept of initial 

(weakest) countable fuzzy topology on a set X for a 

family of fuzzy functions fj: X(Yj, Cj) and also product 

countable fuzzy topological space for an arbitrary family 

{(Xj, Cj): jJ} of countable fuzzy topological spaces. In 

fact, product countable fuzzy topology on X = jJXj is 

the weakest countable fuzzy topology on X, denoted by C 

= jJCj, such that for each iJ, the canonical projection 

i: jJXjXi is fuzzy c-continuous function. 

Corollary 2.13: suppose {(Xj, Cj): jJ} is a family of 

countable fuzzy topological spaces. Then each (Xj, Cj) is 

fuzzy c-compact if (jXj, jCj) is fuzzy c-compact. 

Proof: Fuzzy c-compactness of (Xj, Cj) follows from 

surjectivity and c-continuity of each j and theorem 2.9 

with the assumption that (jXj, jCj) is fuzzy c-compact. 

 Remark 2.14: Consider a countable fuzzy topological 

space (X, C) and a fuzzy cover B = {j: jJ} for X. Since 

⋁j j = 1X, for any (0, 1) and any xX, there is jJ 

such that j(x)  1. Select one such j and set j, = {x: 

j(x)  1}. For any fixed , {j,: jJ} is called -

partition of X by B. If in the definition of -partition we 

take  = 0, then this family is called 0-partition of X and 

each member of it is denoted by j,0 [25]. 

Theorem 2.15: A countable fuzzy topological space (X, 

C) is fuzzy c-compact if and only if every fuzzy c-open 

cover has a finite 0-partition. 

Proof: Suppose the countable fuzzy topological space (X, 

C) is fuzzy c-compact and B = {j: jJ} is a fuzzy c-open 

cover of X. Then B has a finite subcover, say, B0 = {i: i 

= 1, 2, ... ,n} and ⋁   
 i = 1X. Thus for a fixed xX, 

there exists at least one i, i = 1, 2, ..., n, say, k such that 

k(x) = 1. For xX, we select one such k and we set k,0 

= {x: k(x) = 1}. Thus {k,0: k=1,2, ...,n} is a 0-partition 

of X by B0. Therefore B0 has a 0-partition of X. Again B0 

is a subfamily of B, and hence B has a 0-partition of X. 

            Conversely, let every fuzzy c-open cover of X has 

a finite 0-partition. Then any fuzzy c-open cover B = {j: 

jJ} has a finite 0-partition {i,0: i = 1, 2, ..., n}. Let i be 

a fuzzy set in correspondence of i,0 mentioned in the 

remark 2.14 before the theorem. Then, corresponding to 

every i,0 , there is a c-open fuzzy set i such that i,0 = 

{x: i(x) = 1} and thus ⋁i i = 1X for  i = 1, 2, ..., n. 

Therefore {i: i = 1, 2, ... ,n} is a finite subfamily of B 

which is also a fuzzy cover of X and hence (X, C) is 

compact. 

Corollary 2.16:  Suppose (X, C) is a countable fuzzy 

topological space. Then X is not fuzzy c-compact if there 

exists a fuzzy c-open cover B of X with j(x) < 1 for all 

jB. 

Proof: By the first part of the theorem 2.15, for a 

countable fuzzy topological space (X, C) to be fuzzy c-

compact it is necessary that every c-open cover B of X 

has a finite 0-partition of X by B. That is, for each xX, 

there must exists some j B such that j(x) = 1. Thus if 

there exists a point xX such that j(x) < 1 for all j B, 

then the above condition is not fulfilled and (X, C) cannot 

be fuzzy c-compact.     

3. Fuzzy Countably c-compact Space  

Definition 3.1: A countable fuzzy topological space (X, 

C) is said to be fuzzy countably c-compact if for every 

countable collection {n: nN} of fuzzy c-open sets for 

which 1X = ⋁nNn, there exists n1, n2, ..., nkN such that 

1X = ⋁   
    

.  

Alternatively, a countable fuzzy topological space (X, C) 

is said to be fuzzy countably c- compact if every fuzzy 

countable c-open cover of X has a finite subcover. 

Definition 3.2: A countable fuzzy topological space (X, 

C) is said to be fuzzy c-CII if there is a countable 

subfamily B of C such that any member of C can be 

expressed as the supremum of members of B. 

Theorem 3.3: Suppose a countable fuzzy topological 

space (X, C) is fuzzy c-CII. Then X is fuzzy c-compact if 

and only if it is fuzzy countably c-compact.  

Proof: The first part of the theorem is obvious. For the 

converse, suppose X is a fuzzy   countably c-compact 

space, and    F = {j: jJ} is a family of fuzzy c-open sets 

with 1X = ⋁jJ j. Since X is fuzzy c-CII, so there is a 



 Current Trends in Technology and Science  
Volume : 1, Issue : 2 , (Sept.-2012) ISSN : 2279-0535 

  

Copyright © 2012 CTTS.IN, All right reserved 

77 

countable subfamily B of C such that j = ⋁
   

  
   , where 

each   B and ij may be infinity also. Again, let B0 = 

{    jJ, 1 i  ij}. Clearly, B0  B. Then, B0 forms a 

countable fuzzy c-open cover for X. Consequently, there 

is a finite subcover B1  B0 for X. But each member of 

B1 is contained in j for some jJ and so these j’s form a 

finite subcover, i.e. the cover F has finite subcover. 

Hence, X is c-compact. 

Theorem 3.4: A countable fuzzy topological space (X, C) 

is fuzzy countably c-compact if and only if every 

countable fuzzy c-open cover has a finite 0-partition. 

Proof: It can be proved in a similar fashion as in 

theorem-2.15. 

Corollary 3.5: Suppose (X, C) is a countable fuzzy 

topological space. Then X is not fuzzy countably c-

compact if there exists a fuzzy countable c-open cover B 

of X and a point xX with j(x) < 1 for all jB. 

Proof: It is a direct consequence of theorem 3.4. 

Definition 3.6: A countable fuzzy topological space (X, 

C) is said to be fuzzy c-Lindelöf if every fuzzy c-open 

cover of X has a fuzzy countable subcover. 

Now, we characterize fuzzy c-Lindelöf space in the 

following theorem. 

Theorem 3.7: A countable fuzzy topological space (X, C) 

is fuzzy c-Lindelöf if and only if ⋀j j  01X, for any 

family {j: jJ} of fuzzy c-closed sets in X, where ⋀jK j 
 01X for any countable subset K of J. 

Proof: Let (X, C) satisfies the given condition and 

suppose {j: jJ} of fuzzy c-open cover of X and if 

possible ⋁jK j  1X for any countable subset K of J. 

Then, ⋀jK (1j)  01X. Again, from the assumption 

⋀j(1 j)  01X , i.e. ⋁j j   1X, which is a contradiction. 

For the converse, let (X, C) be a fuzzy c-Lindelöf space 

and {j: jJ} be a family of fuzzy c-closed sets in X 

having countable intersection property, i.e. ⋀jK j  01X 

for any countable subset K of J. We are to prove that ⋀j j 
 01X. If possible, let ⋀j j = 01X. Then, ⋁j(1j) = 1X. 

By, Lindelöf property, ⋁jK(1j) = 1X, i.e. ⋀jK j = 01X 

, which is a contradiction. 

Theorem 3.8: A countable fuzzy topological space (X, C) 

is fuzzy c-Lindelöf if and only if ⋀B c-Cl()  01X for 

every family B of fuzzy sets on X, where the intersection 

of each countable subfamily of B is non-empty. 

Proof: The proof of the theorem is same as theorem 2.6. 

Theorem 3.9: Every fuzzy c-CII space is a fuzzy c-

Lindelöf space. 

Proof: Suppose (X, C) is a countable fuzzy topological 

space having c-CII property and         G = {j: jJ} is a 

fuzzy c-open cover of X. From the assumption there is a 

countable subfamily B = {n: nN} of C such that each j 

can be expressed as j = ⋁
   

  
   , where ij may be 

infinity. Let B0 = {
   : jJ, 1  i  ij}. Now, B0 is 

countable, since all the members of B0 are from B, a 

countable family and covers X. Also, since each member 

of B0 is contained in j for some jJ, hence these j’s 

form a fuzzy countable subcover of X. 

Theorem 3.10: suppose (X, C) is a fuzzy c-Lindelöf 

space and f: (X, C)(Y, D) is a surjective fuzzy c-

continuous function. Then Y is fuzzy c-Lindelöf. 

Proof: This can be proved in a similar way that of 

theorem 2.8 and theorem 2.9.  

Theorem 3.11: A countable fuzzy topological space (X, 

C) is fuzzy c-Lindelöf if and only if every fuzzy c-cover 

of X has countable -partition of X for all (0, 1). 

Proof: Let (X, C) be a c-Lindelöf space and G = {j: jJ} 

is a fuzzy c-open cover of it. Therefore G has a countable 

subcover, say, B = {n: nN}. Now for each (0, 1), we 

have an -partition of X by B. Since B is countable, so 

this -partition of X is countable and also it is a -

partition by G, because B is a subfamily of G. 

        Conversely, let G be a fuzzy c-open cover of X and 0 

<  < 1. Suppose {i,0: iI()} is a countable -partition 

of X by G, and i, is defined by the member of i, of G. 

Let  = 
 

 
 , n = 2, 3,...... . Then the family {i,: iI(),  = 

 

 
, n = 2, 3, ....} forms a countable fuzzy subcover of G 

and hence (X, C) is fuzzy c-Lindelöf. 

Conclusion: A new generalized fuzzy topological space 

viz. countable fuzzy topological space has been studied 

by the author earlier. Some properties of that space have 

been mentioned here and also the concept of compactness 

on the new space called c-compact space has been 

introduced and studied. Also the notion of c-Lindelöf 

space has been defined and various properties are 

examined. We hope that the newly introduced space will 

be a powerful tool to study the various properties of fuzzy 

topology and this endeavor is a small step towards that 

goal.  
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