
 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 03 (Apr.- May. 2015)

Copyright © 2015 CTTS.IN, All right reserved

515

VLSI Implementation of Neural Network

Jitesh R. Shinde
1

Research Scholar & IEEE member, Nagpur, India Email:-shindejitesh@gmail.com

Suresh Salankar
2

Professor, G.H.Raisoni College of Engineering, Nagpur, Maharashtra, India

Abstract — This paper proposes a novel approach for

an optimal multi-objective optimization for VLSI

implementation of Artificial Neural Network (ANN)

which is area-power-speed efficient and has high

degree of accuracy and dynamic range.

A VLSI implementation of feed forward neural

network in floating point arithmetic IEEE-754 single

precision 32 bit format is presented that makes the

use of digital weights and digital multiplier based on

bit serial architecture.

Simulation results with 45 nm & 90 nm tech file on

Synopsis Design Vision Tool, Aldec’s Active HDL

tool, Altera’s Quartus tool & MATLAB showed that

the bit serial architecture (TYPE III) based multiplier

implementation and use of floating point arithmetic

(IEEE -754 Single Precision format) in ANN

realization may provide a good multi-objective

solution for VLSI implementation of ANN.

Keyword — Artificial Neural Network (ANN), bit

serial architecture (type III) based multiplier, array

multiplier, floating point arithmetic, multi-layered

artificial neural network (MNN), Neural Network

(NN), multi-layer perceptron (MLP).

1. INTRODUCTION
Multi-objective optimization can be defined as a

technique which involves minimizing or maximizing

multiple objective functions subjects to a set of

constraints.

In conventional approach for VLSI implementation of

digital circuits, there is always a tradeoff between area,

power and speed i.e. optimizing the circuit for speed

increases the area overhead in design and vice versa
[1,2]. Optimizing one parameter affects the other as seen

in equation below:-

*L dd
d

C V
T

I (1.1)

So, the objective of this research work is come to up with

a step by step an optimal multi-objective approach for

VLSI implementation of artificial feed neural network

(NN) wherein all constraints viz. area, speed and power
can be optimized simultaneously as well as the design

should have high degree of precision and should provide

dynamic weight reconfigurability.

2. ARTIFICIAL NEURAL NETWORK
ANN is an information-processing system wherein

neurons process information [3].

An artificial neuron forms the basic unit of artificial

neural networks. The basic elements of an artificial

neurons are (1) a set of input nodes, indexed by, say, 1, 2,

... N, that receives the corresponding input signal or

pattern vector, say x=(P1, P2, ... , PN)T ; (2) a set of

synaptic connections whose strengths are represented by
a set of weights, here denoted by w=(w1,w2,...wI)T ; and

(3) an activation function ‗a‘ that relates the total

synaptic input to the output (activation) of the neuron.

The main components of an artificial neuron are

illustrated in Figure 2.1.

The total synaptic input, a, to the neuron is given by the

inner product of the input and weight vectors:
N

j j

j=1

a= W P ; (2.1)

where we assume that the threshold of the activation is

incorporated in the weight vector. The output activation,
y, is given by

 y=f(a); (2.2)

Fig.2.1: Structural diagram of simple neuron

The multi-layer perceptron (MLP) or muti-layer artificial

neural network (MNN) is a feed forward neural network

consisting of an input layer of nodes, followed by two or

more layers of perceptrons, the last of which is the output

layer. The layers between the input layer and output layer

are referred to as hidden layers. MLPs have been applied

successfully to many complex real-world problems

consisting of non-linear decision boundaries. Three-layer

MLPs have been sufficient for most of these applications
[3, 4] and its block diagram representation is shown in

figure 2.2.

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 03 (Apr.- May. 2015)

Copyright © 2015 CTTS.IN, All right reserved

516

Fig.2.2: Block diagram representation of three-

layered MNN

3. DESIGN ISSUES
1. Data Representation: An important issue during
hardware implementation of neural network is to strike a

balance between the need for reasonable precision and

cost associated with in logic overhead with increased

precision [5]. So selection of proper arithmetic scheme

viz. fixed point arithmetic scheme or floating point

arithmetic is important.

- The fixed point arithmetic scheme will be

advantageous in application where degree of

precision is not important and thus in such

application it may provide a good multi-objective

solution for optimizing cost of hardware and speed

simultaneously. But fixed point arithmetic scheme
does not provide a better option for dynamic weight

re-configurability because as input changes, data

bus size and hence the entire logic need to

reconfigured every time as the number of bits used to

represent weights are varied in order to enhance the

precision and accuracy of system. Moreover, weights

need to be processed first (i.e. truncated and rounded

off) before applying to system and hence thereby

increasing the simulation time.

- The floating point arithmetic scheme (IEEE 754-

Single precision format (32 bit) or Double precision
format (64 bit)) offers the greatest amount of

dynamic range and eliminates the need of processing

the weights ,and thereby making it good choice for

neural network based applications where high degree

of precision is desired. But the hardware

implementation for floating point arithmetic is

costlier and the speed of processing is low due to

double calculations i.e., separate calculation for

mantissa and exponent.

2. Analog versus Digital Neural network

- The computational density of chip is defined as
amount of computation per unit silicon. The

computational density of analog neural network is 10

to 100 times greater than that of digital neural

network because complex non-linear operations such

as multiply, divide and tangent can be implemented

with handful of transistors in a analog network in

comparison to digital network which requires
hundreds of transistor or even thousands of transistor

to perform the same operation. Thus, precision of

analog neural network is directly proportional to area

of the chip.

- The speed of analog neural network is inversely

proportional to area of chip. Smaller the area of chip

less will be the time taken by signal to propagate to

output or from one circuit component to other.

Moreover, the parasitic capacitance will also be less

and thereby further enhancing the speed of the

circuit.

- The power consumption of analog circuit is directly
proportional to the speed at which circuit operates. A

large percentage of power consumed is dissipated as

heat during normal operation of the circuit. For given

speed and circuit architecture, efficiency of power

dissipation decreases with the area of chip but this

will be accompanied by degradation in the precision

of circuit

- One common approach to reduce power requirement

of analog circuit is to reduce operating voltages.

However the immediate effect will be reduce

dynamic range of all signals in circuits and hence
affecting the precision of circuit.

- Digital neural network are inherently robust for

effects such as substrate noise, power supply

variation, radiation, matching, noise, drift, mobility

reduction and so on. In analog networks, these

effects can be minimized but at the cost of increased

power consumption and area of circuit.

- An analog network must be full custom design.

Digital Designs are flexible since it allows software

control and arbitrary level of precision (low to high,

and fixed or floating point). They can be generated

from logic description of its function.
- Loading of digital weights is easy in comparison to

loading of analog weights since no feedback is

required.

- Analog neural networks are harder to scale with new

processes and require total redesign. Digital neural

networks scale easily with new processes and require

no redesign.

Above conclusions drawn from (6, 7, 8, 9) suggest that

analog neural networks are suitable for classification

problems where minimum power consumption is main

design constraint i.e. single objective optimization goal
and digital neural networks may be suitable for

classification problems where design constraints are

precision, area, power and speed i.e. multi-objective

optimization.

3. Multiplier Unit

Neural network processing comprises a large number of

multiplications operations (equation 2.1). Thus, the

performance of digital neural network on large extent

depends on how the multipliers are realized in digital

neural network. A key design issue in efficient realization

of multiplier block will be trade-off between precision,

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 03 (Apr.- May. 2015)

Copyright © 2015 CTTS.IN, All right reserved

517

area, speed and power consumption of the circuit [1, 2,
10, and 11]. MCM (Multiple Constant Multiplication)

approach may not be suitable in digital neural network

because here requirement is that weight needs to be

fixed. So, dynamic weight adjustment will not be

possible because it may require redesigning entire block

[1, 2].

4. DESIGN APPROACH FOR OPTIMIZATION
To realize multi-objective optimized i.e. high degree of

precision, area-speed-power optimized VLSI

implementation for ANN following approaches were

selected:
- Floating point arithmetic scheme (IEEE 754-single

precision (32 bit) format to have high degree of

precision.

- Digital neural network may enable in realizing the

multi-objective optimization goal.

- Array multiplier or multiplier unit based on bit

serial architecture or digit serial architecture

(Type 3) (14, 15). Block schematic of multiplier unit

based on bit serial architecture and digit serial

architecture are shown in figure 4.1, 4.2& 4.3

respectively.

Fig.4.1: An example of 4×4 Array multiplier

Bit - serial arithmetic and communication is efficient for

computational processes, allowing good communication

within and between VLSI chips and tightly pipelined

arithmetic structures. It is ideal for neural networks as it

minimizes the interconnect requirement by eliminating

multi - wire busses [16].

Comparative analysis of multiplier (N*N) with respect to

multiplicand data size ‗A‖ & multiplier data size of N=8

in both cases are shown in table 4.1.

Fig.4.2: Bit-serial type-III multiplier with word-length of

4 bits

Fig.4.3: Digit Cell for type-III multiplier

Table (4.1): Comparison of Multipliers

Parameters

Type of Multipliers 8 × 8 bit

MUL1

(Array)
MUL2 (Digit)

MUL3 (Bit

Serial)

G1 N
2
=64

W*(D*D)=32 N=8

G2 N(N-1)=12 2*(N/W)=8 N=8

Pipelining Absent Present Present

Speed Low
Best due to

unfolding

concept

Better

Area High
Better than array

multiplier
Optimum

Dynamic

Power

Dissipation

Moderate

Higher than bit

serial

architecture due

to unfolding

concept

Optimum

Where description of notations G1, G2 used in above

table is as follows:

- G1 => approximate number of AND gates required

for partial product implementation.

- G2 => approximate number of Full Adders required.
- Digit size D=N/W=4. No. of folding W=2.

Comparative analysis suggests that bit serial architecture

(Type III) provides better trade off to realize multi-

objective optimization approach for VLSI

Implementation of digital neural network.

i. Criteria for FPGA selection & high

performance:

- Any FPGA is suited to bit serial design. The first

consideration is whether there are sufficient logic

elements and I/O resources to support the design.

Most bit serial designs have a very low routing

complexity, so the routing resources are not an issue.
- The entire design should be synchronous, including

the sets and resets.

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 03 (Apr.- May. 2015)

Copyright © 2015 CTTS.IN, All right reserved

518

- Use hierarchy in the design.
- Add pipeline registers to break up long delays.

-

V. DESIGN & IMPLEMENTATION
In our work, we had designed and implemented VLSI

digital ANN viz. ANN using array multiplier approach

(fnn1test1) & ANN using multiplier approach based on

bit serial architecture (Type III) (bsfnn1_test1).
The experimental setup flow used in this research work is

as follows:

Step I: IMPLEMENTATION IN MATLAB: The data

that used in this project was acquired from University of

California, Irvine (UCI Machine Learning Repository).

The first objective of this study was to determine whether

an Iris flower is of versicolour, virginica or setosa. And

also to identify the fit training settings for building

classification model for Iris. The attributes information is

given in Table 5.1.

Table 3.1: Description of attributes

After observing data set it was observed that only two

attributes viz. petal length and petal width were sufficient

to classify whether an Iris flower is of versicolour,

virginica or setosa. Thus, by reducing dimension of input

data set we were able to optimize the simulation runtime

considerably in MATLAB.

To ensure a correct comparison of different types of

neural networks, the division of input data into training,

validation and test sets is performed by independent part

of code and the division result is stored. The partitioning

of input data is performed randomly with a certain ratio
of input entities to be stored as training set, validation set

and test set. The experimental settings for this done in

MATLAB to classify data using neural toolbox is shown

in figure 4.1 and 4.2 respectively and result i.e. trained

graphs obtained showing 100 % fit is shown in figure

5.1, 5.2 and 5.3 respectively.

Fig.5.1: Neural net specification in of MATLAB

Trained graph of iris data indicates type of iris. The plot

describes the attribute and classes with target and

distribution the iris data. Basically the training purpose is

to identify the fit training settings for model.

Fig.5.2: Neural network specification in nn traintool of

MATLAB

No Physical

Attribute

Features

1. sepal length Used as Input

2. sepal width Used as Input

3. Petal length Used as Input

4. Petal width Used as Input

5. Target Used as Output:

 Setosa

 Versicolou

 Virginica

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 03 (Apr.- May. 2015)

Copyright © 2015 CTTS.IN, All right reserved

519

Fig.5.3: Trained graph showing 100% fit

STEP II : IMPLEMENTATION in VHDL: The

weights of stage 1(fw11, fw22) and stage 2 (fw33) (refer

fig 3.2) obtained from this trained graph were first
converted into IEEE 754 single precession 32 bit binary

format in MATLAB and were used in stage 1 and stage 2

of VLSI implementation of neural network shown in

figure (5.4).

ANN in this research work uses three layer feed forward

neural network architecture which has two input neuron,

fifteen hidden neuron and one output neuron. Inputs to

the ANN are a 32 bit number in IEEE-754 single

precision format, represent attributes petal length and

petal width of iris flower and output is 32 bit number in

IEEE-754 single precision format, represent a prediction
to which category flower belongs.

The flow the input data in generalized block schematic

structure of IEEE 754 single precision multiplier block

used is shown in figure (5.5).

 Fig.5.4: RTL view of VLSI Implementation of neural

network

Fig.5.5: Generalized block schematic structure of

IEEE 754 single precision multiplier block

Unpack block unpacks incoming data (31 down to 0) into

three parts viz. sign bit (MSB 31st bit), exponent (30

down to 23) and mantissa (22 down to 0). This blocks

maps 23 bit mantissa into 32 bit by appending zeros at

LSBs.

Packfp block packs final result of multiplication obtained

after normalization & rounding i.e. its mantissa, exponent

and sign bit into IEEE -754 single precision formats.

Unpackfp and packfp block also checks the exponent and

mantissa part of inputs for the following conditions
(underflow (de-normalized number), overflow, infinity

and not a number (NaN) to find the 32 bit input data and

hence output (via FPpack block & logic block to predict

nature of output) is a valid IEEE 754 single precision

floating point number [12, 13].

Table 5.1: Table listing conditions to check nature of

input

 Number sign exponent
 mantissa

normalized number 0/1 01 to FE
 any

value

De-normalized

number (underflow)
 0/1 00

 any

value

 zero 0/1 00 0

 infinity (Overflow) 0/1 FF 0

NaN i.e Not a Number

(inf*0 or inf/inf or 0/0

form)

 FF
 any value

but not 0

0 50 100 150
50

100

150

200

250

300

350

target

nn output

in2(31:0)

R10(31:0)

R11(31:0)

R12(31:0)

R13(31:0)

R14(31:0)

R15(31:0)

R1(31:0)

R2(31:0)

R3(31:0)

R4(31:0)

R5(31:0)

R6(31:0)

R7(31:0)

R8(31:0)

R9(31:0)

U2

fsf2

in1(31:0)

R1(31:0)

R10(31:0)

R11(31:0)

R12(31:0)

R13(31:0)

R14(31:0)

R15(31:0)

R2(31:0)

R3(31:0)

R4(31:0)

R5(31:0)

R6(31:0)

R7(31:0)

R8(31:0)

R9(31:0)

U3

fsf1

A1(31:0)

R1(31:0)
A10(31:0)

R10(31:0)

A11(31:0)

R11(31:0)

A12(31:0)

R12(31:0)

A13(31:0)

R13(31:0)

A14(31:0)

R14(31:0)

A15(31:0)

R15(31:0)

A2(31:0)

R2(31:0)

A3(31:0)

R3(31:0)

A4(31:0)

R4(31:0)

A5(31:0)

R5(31:0)

A6(31:0)

R6(31:0)

A7(31:0)

R7(31:0)

A8(31:0)

R8(31:0)

A9(31:0)

R9(31:0)
B1(31:0)

B10(31:0)

B11(31:0)

B12(31:0)

B13(31:0)

B14(31:0)

B15(31:0)

B2(31:0)

B3(31:0)

B4(31:0)

B5(31:0)

B6(31:0)

B7(31:0)

B8(31:0)

B9(31:0)

U1

fsfas1

RS1(31:0) R1(31:0)

RS10(31:0) R10(31:0)

RS11(31:0) R11(31:0)

RS12(31:0) R12(31:0)

RS13(31:0) R13(31:0)

RS14(31:0) R14(31:0)

RS15(31:0) R15(31:0)

RS2(31:0) R2(31:0)

RS3(31:0) R3(31:0)

RS4(31:0) R4(31:0)

RS5(31:0) R5(31:0)

RS6(31:0) R6(31:0)

RS7(31:0) R7(31:0)

RS8(31:0) R8(31:0)

RS9(31:0) R9(31:0)

U4

fsf3

R10(31:0)

Q(31:0)

R11(31:0)

R12(31:0)

R13(31:0)

R14(31:0)

R15(31:0)

R1(31:0)

R2(31:0)

R3(31:0)

R4(31:0)

R5(31:0)

R6(31:0)

R7(31:0)

R8(31:0)

R9(31:0)

U5

fsfas2

in1(31:0)

in2(31:0)

Q(31:0)

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 03 (Apr.- May. 2015)

Copyright © 2015 CTTS.IN, All right reserved

520

The IEEE 754 standard partially solves the problem of
underflow by using de-normalized representations in

which a de-normalized representation is characterized by

an exponent code being all 0's, interpreted as having the

whole part of the significand being an implied 0 instead

of an implied 1[12].

Fig.5.6: Flowchart representing logic used in program to

check for underflow condition

Multiplier block performs the multiplication of two input

data (mantissa) coming from unpackFP0 & unpackFP1

block and generates mantissa part of final output.

Output data bus of multiplier blocks implementated with

array multiplier logic 32bit×32bit (figure 4.1) was of 64

bit and total partial product inferred were 64. Output data

bus of multiplier block implemented with bit serial logic

(figure 4.2) was 24 bit and number of AND gates
inferred to implement partial product were 24.

Exponent adder blocks add exponent parts of respective

exponent parts of input A and B to generate exponent of

output Z.

The RTL view of ANN using array multiplier and ANN

using bit serial architecture (Type III) based multipliers

are shown in figure 5.7 & 5.8 respectively.

FPnormalize block checks whether 23 bit mantissa‘s

MSB bit is one or zero. If it is one then mantissa is in de-

normalized form and FPnormalize block converts de-

normalized mantissa into normalized form.

 The FPround block performs the function of rounding.

Fig.5.7: RTL view of ANN using array multiplier

Fig.5.8: RTL view of ANN using bit serial architecture

(Type III) based multiplier

Floating-point numbers are coded as "sign/magnitude",

reversing the sign-bit inverses the sign. Consequently the

same operator performs as well addition or subtraction

according to the two operand's signs.

Floating-point addition progresses in 4 steps:

- Mantissa alignment if A and B exponents are

different,

- Addition/subtraction of the aligned mantissas,

- Renormalization of the mantissas sum S if not
already normalized

- Rounding of sum S'.

The floating point adder block diagram used is shown in

figure 5.9. The major entities in this block diagram are

bigfp_fps, absdiff1 blockdecsel1 block, barrel_shift_R

block, intadd23 block, readadj_mj block and expadder1

block respectively. Each block description is as follows:-

1. bigfp_fps block :- The function of this block is to

find the largest and smallest number as shown in

figure5.10. Logic used to find the largest and

smallest number assuming data is of 4 bit is as

follows:-

http://users-tima.imag.fr/cis/guyot/Cours/Oparithm/english/Adspec.htm#sigabs

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 03 (Apr.- May. 2015)

Copyright © 2015 CTTS.IN, All right reserved

521

Fig 5.9: RTL view of floating point adder

- Let given numbers are A=0101 and B=1000 where

first bit i.e. A (3) & B (3) represents sign bit of given

number.

- bigtemp <= FP_A when (not(FP_A(3))&FP_A(2

downto 0)) > (not(FP_B(3))&FP_B(3 downto 0)) else

FP_B;

- smalltemp <= FP_A when

(not(FP_A(3))&FP_A(2 downto 0)) <
(not(FP_B(3))&FP_B(2 downto 0)) else FP_B;

- big_op <= smalltemp when (FP_A(3)

and FP_B(3)) > '0' else bigtemp ;

- small_op <= bigtemp when (FP_A(3)

and FP_B(3)) > '0' else smalltemp ;

- The result of program will be big_op <=A &

small_op <=B.

 Fig 5.10: Flow graph for logic used in bigfp_fps block

2. absdiff1 block :- This block find the larger of the

two exponent and outputs the absolute value of the

exponent difference as shown in figure 5.11.

Fig 5.11: Flow graph for logic used in absdiff1 block

3. decsel1 block: - This block outputs the information
by how many bit smaller mantissa should be shifted

be shifted depending on input coming from output of

absdiff1 block. The "implicit bit" is added, totaling

24 bits.

4. barrel_shift_R block:- This block shifts the smaller

operand mantissa (small_op (23 down to 0)) towards

right by number coming from output of decsel1

block.

5. intadd23 block:- This block computes the addition

of two floating point numbers (24 bit) using 2s-

complement arithmetic and result obtained is of 25

bits.(figure 5.11). Here, if addsub= ‗0‘, the two
numbers are added, else the subtraction is performed

using 2s-complement arithmetic.

 Fig 5.11: Flow graph for logic used in intadd23 block

6. readj_m1 block :- This block checks 25 bit result

i.e. mantissa of intadd23 block and performs
following three tasks viz. :

- It checks each bit of mantissa from MSB part for ‗1‘

and outputs that bit position at output i.e. onethloc

and thus the exponent is computed from the result of

addition block. If for example man1(22)= ‗1‘, then

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 03 (Apr.- May. 2015)

Copyright © 2015 CTTS.IN, All right reserved

522

onethloc = ―00000001‖ or man1(0)= ‗1‘, then
onethloc = ―00010111‖ else onethloc = ―00011000‖.

- It readjusts the mantissa block.

- It outputs addsub =0 if man1(24 and 23)= '0' else

addsub = ‗1‘.

7. expadder1 block: - This blocks performs the

addition of exponents viz. big_op number exponent

exp1 (7 down to 0) and exponent obtained from

readj_m1 block val(7 down to 0). If addsub= ‗0‘, the

two numbers are added, else the subtraction is

performed using 2s-complement arithmetic.

Fig 5.12: Flow graph for logic used in expadder1 block

VI. RESULTS & COMPARISON
The code for of ANN using array multiplier and ANN

using bit serial architecture (Type III) based multiplier

were written in Aldec Active HDL tool and synthesized

on Altera‘s Quartus tool and it was targeted on FPGA

Cyclone 2, Device EP2C70F672C6. Later on code was

also tested at Backend on Synopsis tool on 45 nm & 90

nm tech file. FPGA implementation of ANN array

multiplier & using bit serial architecture (Type III) based

multiplier were clearly classifying iris data into 3
categories: - output corresponding to counter‘s count

value from 1 to 50 represented iris setosa, output

corresponding to counter‘s count value from 51 to 96

represented iris versicolour and output corresponding to

counter‘s count value from 97 to 143 represented iris

virginica. This was found to be matching with iris flower

data set.

The performance comparison of implemented ANN at

frontend and backend VLSI design are given in table 6.1

and 6.2 respectively and graphical representation of total

cell area and total dynamic power dissipation are shown
in figure 6.1 and 6.2 respectively.

The experimental results at Backend VLSI design level

indicates that ANN using bit serial architecture Type III

based multiplier is better than ANN using array
multiplier in

- Total Cell area saving in 90 nm & in 45 nm: - 62.681

% & 60.65 % respectively.

- Total area saving in 90 nm & in 45 nm: - 63.86 % &

60.65 % respectively.

- Total dynamic power saving in 90 nm & in 45 nm: -

53.81 % & 90.88 % respectively.

Table 6.1: Performance comparison of implemented

neural networks at frontend level

Parameters

32×32 bit

NN using

Array

Multiplier

NN using Bit serial

architecture based

(Type III) Multiplier

Total Logic

Elements
63038 62725

Embedded

multipliers
300/300 0/300

Total dynamic

power

dissipation(mW)

40.14 6

Data arrival time

tco(nsec)
300.023 273.496

Table 6.2: Performance comparison of implemented

neural networks at backend level
Parameters 90 nm tech file 45 nm tech file (no

Workload model)

Array Bit Arra

y

Bit

Total Area

nm
2

2333944 843437 -- --

Total cell

area nm
2

2193638 818627 897092 353045

Total

dynamic

power

dissipation

5.1803

mW

2.393 mW 148.468

mW

13.554

mW

Data arrival

time nsec

90.9 1.5 141.5 1.14

The performance comparison of implemented multiplier
at backend VLSI design is given in table 6.3 and 6.4

respectively.

Table 6.3: Performance comparison of implemented

multipliers 32 × 32 bit at backend level
Parameters 90 nm tech file 45 nm tech file (no

Workload model)

Array Bit Array Bit

Total area

nm
2

20677.4997

57

5420.97173

6

-- --

Total cell

area (nm
2
)

20007.0145

59

5304.72962

6

19676.34075

9

2185.06077

1

Total

dynamic

power

dissipation(

mW)

0.5913478 0.0275544 6.3856 0.0312965

Data arrival

time (nsec)

19.89 4.19 1.93 1.34

Table 6.4: Performance comparison of implemented

multipliers 32 × 32 bit at backend level

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 03 (Apr.- May. 2015)

Copyright © 2015 CTTS.IN, All right reserved

523

Parameters of

multiplier 32×32 bit

Array

Multiplier

Bit Serial architecture

based multiplier (Type III)

Total Logic Elements 234 209

Total dynamic power

dissipation(mW)

6.11 0.54

Worst propagation

delay

41.604 21.495

VII. CONCLUSIONS
The realization of bit serial architecture Type III based

multiplier implementated in floating point arithmetic

provides a good trade off in realizing high end

applications which is area-speed-power efficient with

good precision and dynamic range. The bit serial

architecture Type III based multiplier approach suggested

in this paper were found to be giving better performance
than other promising findings available in literature [17,

18, 19, 20, 21, 22, 23, 24, 25] . Hence, the realization of

ANN design using bit serial architecture Type III based

multiplier implementated in floating point arithmetic

(IEEE 754- single precision format) has presented a new

approach for multi-objective optimization of VLSI

implementation of neural network. It has also proven to

be better alternative over ANN design using array

multiplier.

Future research work system by improvising adder unit

block if possible and a full characterization of each
design option at layout level.

REFERENCE
[1] Jitesh Shinde, S. Salankar, ―Multi-objective

Optimization for VLSI Circuits‖, IEEE
International Conference on Computational

Intelligence & Communication Networks‖,

November 14-16, 2014, Kolkata, India

[2] Jitesh Shinde, S. Salankar, ―Optimal Multi-

objective Approach for VLSI Implementation of

Digital FIR Filters‖, International Journal of

Engineering Research & Technology (IJERT),

Vol. 3, pg. no. 2470-74, Issue 2, February – 2014.

[3] S N Sivanandam, S Sumathhi, S N DEEPA, ―

Introduction to Neural Networks Using MATLAB

6.0‖, ch no 1,2 , pg no.1 to 26, (Tata McGraw-
Hill, 2006).

[4] Amos R. Omondi, Jagath C. Rajapakse, ― FPGA

Implementation of Neural Networks‖, ch no 1, pg

no 3 to 6, (Springer, 2006).

[5] Suhap Sahin, Yasar Becerikli, and Suleman

Yazici, ―Neural Networks Implementation in

Hardware using FPGAs‖, ICONIP 2006, Part III,

LNCS 4234, pp.1105, 2006, © Springer-Verlag

Berlin Heidelberg 2006.

[6] Sorin Draghici, ―Neural Networks in Analog

Hardware – Design and Implementation Issues,‖

International Journal of Neural Systems, vol. 10,
no. 1 (February, 2000), 19-42, © World Scientific

Publishing Company.

[7] Dan Hammerstorm, ―Digital VLSI for Neural
Networks‖, Department of Electrical and

Computer Engineering, OGI School of Science &

Engineering, Portland, Oregon.

[8] Vipan Kakkar, ―Comparative Study on Analog

and Digital Neural Networks‖, International

Journal of Computer Science and Network

Security, vol.9, no.7, July 2009.

[9] Nelson Morgan, Krste Asanovic, Brian Kingsbury,

John Wawrzynek, ―Developments in Digital VLSI

Design for Artificial Neural Networks‖, TR-90-

065.

[10] Biederman D.C., Ososanya, ―Design of a neural
network-based digital multiplier‖, System Theory,

1997., Proceedings of the Twenty-Ninth

Southeastern Symposium, Cookeville, TN, page

no. 320 – 326, 9-11 Mar 1997.

[11] Uroˇ s Lotricˇ, Patricio Bulic, ―Applicability of

approximate multipliers in hardware neural

networks‖, Neurocomputing Elsevier (2012),

SciVerse ScienceDirect.

[12] Jean-Michel Muller, Nicolas Brisebarre, Florent

de Dinechin, Claude-Pierre, Jeannerod Vincent

Lef`ever, Guillaume Melquiond, Nathalie Revol,
Damien Stehl´ e, Serge Torres, ― Handbook of

floating point arithmetic‖, Birkh¨auser Boston,

part of Springer Science+Business Media.

[13] A.Nagoor Kani, ―Digital Signal Processing‖, ch.8,

Tata McGrawhill.

[14] Yun-Nan Chang,Student Member, IEEE,

Janardhan H. Satyanarayana, Member, IEEE, and

Keshab K. Parhi, Fellow, IEEE, ―Systematic

Design of High-Speed and Low-Power Digit-

Serial Multipliers‖, IEEE Transactions on Circuits

and Systems—II: Analog & Digital Signal

Processing, Vol. 45, no. 12, December 1998.
[15] Ms.P.J.Tayade, Dr. Prof. A.A.Gurjar, ―Systematic

Design of High-Speed and Low-Power Digit-

Serial Multipliers VLSI Based‖, International

Journal of Management, IT and Engineering, Vol.

2, Issue 5, Pg. no. 439-446, May 2012.

[16] Alan F. Murray, Anthony V. W. Smith and Zoe F.

Butler, ―BIT -SERIAL NEURAL NETWORKS‖,

American Institute of Physics 1988.

[17] Kumar Mishra, V.Nandanwar, Eskinder Anteneh

Ayele, S.B.Dhok, ― FPGA Implementation of

Single Precision Floating Point Multiplier Using
High Speed Compressors‖, International Journal

of Soft Computing & Engineering, Vol. IV, Issue

II, May 2014.

[18] B.Jeevan, S.Narendra, Dr. C.V.Reddy, Dr.

K.Sivani, ―A High Speed Binary Floating Point

Multiplier Using Dadda Algorithm‖, IEEE 2013.

[19] Shaifali, Sakshi, ― FPGA Design of Pipelined 32-

bit Floating Point Multiplier‖, International

Journal of Computational & Management, Vol.

XVI, Issue V, September, 2013.

 Current Trends in Technology and Science

ISSN : 2279-0535. Volume : 04, Issue : 03 (Apr.- May. 2015)

Copyright © 2015 CTTS.IN, All right reserved

524

[20] Chaitali V. Matey, Dr. S.D. Chede, S.M.Sakhare, ―
Design & Implementation of Floating Point

Multiplier Using Wallace and Dadda Algorithm‖,

International Journal of Application or Innovation

in Engineering & Management‖, Vol. III, Issue

VI, June, 2014.

[21] Summit Vaidya, Deepak Dandekar, ―Delay-Power

Performance Comparison of Multipliers in VLSI

Circuit Design‖, International Journal of Computer

Networks & Communications (IJCNC)‖, Vol. II,

Issue IV, July 2010.

[22] M.K.Pavuluri, T.S.R. Krishna Prasad,

Ch.Rambabu ―Design & Implementation of
Complex Floating Point Processor using FPGA‖,

International Journal of VLSI Design &

Communication Systems (VLSICS)‖, Vol. IV,

Issue V, October 2013.

[23] Prashant Kumar Sahu, Nitin Meena, ―Comparative

Study of Different Multiplier Architectures‖,

International Journal of Engineering Trends &

Technology (IJETT)‖, Vol. IV, Issue X, October

2013.

[24] Deepak Purohit, Himanshu Joshi, ― Comparative

Study & Analysis of Fast Multipliers‖,
International Journal of Engineering & Technical

Research (IJETR), Vol. II, Issue VII, July 2014.

[25] Anitha R, Alekhya Nelapati, L.Jesima W,

V.Bagyaveereswaran, ― Comparative Study of

High Performance Bruan‘s Multiplier using

FPGAs‖, IOSR Journal of Electronics &

Communication Engineering (IOSRJECE)‖, Vol.

I, Issue IV, pp 33-37, May-June,2012.

AUTHOR’S PROFILE
Jitesh R. Shinde received B.E. Degree in

Electronics & Telecommunication
Engineering from and M. Tech Degree in

VLSI from Rashtrasant Tukadoji Maharaj

Nagpur University in 2005 & 2007

repectively. He has also done C-DAC

diploma in VLSI Design in 2008. He has also done

specialization in IC Layout Engineering certified by

University of California, Santacruz Extension and

Cadence from TIIT, Hyderabad in 2008. He is doing

research in VLSI domain from Rastrasant Tukadoji

Maharaj Nagpur University, Nagpur. His current research

focuses on VLSI design, Digital Signal Processing,
Neural Network.

Suresh S. Salankar, received B. E.

Degree in Power Electronics from

Bapurao Deshmukh College of

Engineering, Sevagram in 1987, M.Tech

in System and Control Engineering from

Indian Institute of Technology, Bombay in

1994, Ph.D in Electronics and Telecommunication

Engineering from Swami Ramanand Teerth Marathwada

University, Nanded, India in 2008. He is currently

working as Professor in G. H. Raisoni College of
Engineering, Nagpur, India. He has 27 years of teaching

experience. He is member of Indian Society for

Technical Education, Institution of Engineers (India) and

Computer Society of India. His research interests are in

the design and evaluation of learning algorithms for

Pattern Recognition Applications. It includes, in

particular, neural network classifiers, Support Vector

Machine Classifiers and Classifier combining strategies.

He has published several papers in these areas.

