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Abstract — The elliptic curve crypto systems are used 

for implementing protocols such as ECDSA digital 

signature scheme, EC Elgamal Encryption/ 

Decryption scheme, Diffie-Hellman key exchange 

scheme and so on. This paper analyzes the elliptic 

curve operations of the ECC protocol ECDSA. The 

steps involved in ECDSA are key-pair generation, 

signature generation and signature verification. The 

digital signature is typically created using the hash 

function. The transmitter sends the encrypted data 

along with the signature to the receiver. The receiver 

who knows about the senders public key can 

authenticate the signature using his private key. 

Thereby ECC ensures the secured data 

communication. The proposed algorithm is highly 

parallelizable and well adapted to VLSI 

implementation of elliptic curve crypto systems. 
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1. INTRODUCTION  
The elliptic curve cryptosystems (ECC) were invented 

around 1985  independently  by Miller and Koblitz. Since 

their introduction a broad discussion on their security and 

efficiency  has been carried on. It is this very efficiency 

that makes them so interesting for us today. This is due to 

the fact that information technology is developing very 

fast. Today we use handhelds and mobile phones as we 

have a need in securing communications on these 

devices. But several constraints like limitations in 

memory, computing power, bandwidth requirement etc 

need to be considered. What we need is a cryptosystem 

with small keys, and a small signature size. Efficient 

encryption/decryption is not so important because these 

operations are usually done with a private key 

cryptosystem. 

ECC has exactly the desired properties. This comes from 

the fact, that there are no sub exponential algorithms for 

the ECDLP (elliptic curve discrete logarithm problem) 

known today. This means that we can use shorter keys 

(compared to other cryptosystems) for high security 

levels. 

The ECDSA is the elliptic curve analog of the DSA. 

ECDSA was first proposed in 1992 by Vanstone in 

response to NIST‟s (National Institute of Standards and 

Technology) request for comments on their first proposal 

for DSS. Digital signature schemes are the counterpart to 

handwritten signatures[3]. A digital signature is a number 

that depends on the secret key only known by the signer 

and on the contents of the message being signed. 

 

2. ELLIPTIC CURVE  
The elliptic curves are not the same as an ellipse. They 

are  named  so  because  they  are  described  by cubic 

equations similar to those used for calculating the 

circumference of an ellipse. An elliptic curve may be 

defined as a set of points on the co-ordinate planes, 

satisfying the equation of the form, 

y
2
[+xy] = x

3
 + ax

2
 + b              (1) 

The square brackets mean that the term is optional. x and 

y are variables, a and b are constants. 

However, these quantities are not necessarily real 

numbers; instead they may be values from any field. For 

cryptographic purposes we always use a "finite" field - 

that is x, y, a and b are chosen from a finite set of distinct 

values. 

 

3. OPERATIONS IN FIELD GF(2
m
) 

The field GF(2
m
) has particularly importance in 

cryptography since it leads to particularly efficient 

hardware implementations. Elements of the field are 

represented in terms of a basis. Most implementations 

either use a polynomial basis or normal basis. A normal 

basis is believed to be a more efficient hardware 

implementation. 

3.1. Addition and Squaring  

The addition operation over GF(2
m
) is simply a bitwise 

exclusive OR operation. Furthermore squaring is simply 

a rotate left operation. 

3.2. Multiplication  

There are many types of multiplication in finite fields 

namely, Karatsuba multiplication, Comba Multiplication, 

etc. This paper analyses Karatsuba multiplication. 

 

4. KARATSUBA MULTIPLICATION 
In 1963 A. Karatsuba and Y. Ofman discovered that 

multiplication of two m bit numbers can be done with a 

bit complexity of less than O(m
2
) using an algorithm now 

known as Karatsuba multiplication[4]. For multiplication 
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in GF(2
m
) the Karatsuba multiplication scheme can be 

applied as well. 

 
Fig.1. Hardware implementation of Karatsuba 

multiplication 

The fundamental Karatsuba multiplication for 

polynomials in GF(2
m
) is based on the idea of divide and 

conquer, since the operands are divided into two 

segments. One may attempt to generalize this idea by 

subdividing the operands into more than two segments. 

The multiplication over GF(2
m
) is computed by a single 

AND operation. The hardware implementation of 

karatsuba multiplication is done in a recursive process as 

shown in figure 1.  

 

5. ELLIPTIC CURVES OVER GF(2
m
)  

This section defines a group constructed from points on 

elliptic curves over GF(2
m
) and efficient implementation 

of operations in this group. A non-singular elliptic curve 

E over GF(2
m
) , E( GF(2

m
)) is the set of solutions to the 

following equation with coordinates in the algebraic 

closure of E.  

y
2
[+xy] = x

3
 + ax

2
 + b              (2) 

 

where a,b are in GF(2
m
) and b is non-zero. Such an 

elliptic curve is an abelian group. 

 
Fig.2. Elliptic Curve 

 

6. CURVE OPERATIONS 
6.1. Curve Addition  

The crucial property of an elliptic curve is that , the 

resultant point obtained by adding two points on the 

curve is also on the curve. The addition rule satisfies the 

normal properties of addition. If P = (x1, y1) and            

Q = (x2, y2) are points on the elliptic curve, the addition 

rule has the form: 

(x1, y1) + (x2, y2) = (x3, y3)            (3) 

 

where; x3 = L2
 + L + x1 + x2 + a      (4) 

 
y3 = L(x1 + x3) + x3 + y1                       (5) 

 

L = (y1 + y2) / (x1 + x2)                   (6) 
 

If x1 = x2 and y1 = y2 we must use instead 
 

x3 = L2 + L + a                                 (7) 

 
y3 = x1

2
 + (L + 1)x3                                  (8) 

 

L = x1 + (y1/x1)                               (9) 
 

Again, there are some other special cases which must be 

considered first: if x1 = x2 and y2 = x1 + y1 then the 

result is zero, and if either point is zero, the result is the 

other operand. In the case where P and Q are equal, it is 

called point doubling whereas if P and Q are not equal it 

is called point addition. 

 

6.2. Curve Multiplication  

Multiplication is defined by repeated addition, i.e, 

                  Q = kP                           (10) 
 

i.e.; Q = P + P + P + 
. . . .

  k times     (11) 
 

This can be computed using point addition and point 

doubling. 

 

7. DISCRETE LOGARITHM  PROBLEM  
The Elliptic curve cryptography is based on the discrete 

logarithm problem applied to elliptic curves over a finite 

field[1]. In particular, for an elliptic curve E, it relies on 

the fact that it is easy to compute Q = kP, for k in GF(2
m
) 

and P,Q in E. However there is currently no known sub 

exponential algorithm to compute k given P and Q. In 

fact the discrete logarithm problem can be used to build 

cryptosystems with finite abelian group. Indeed 

multiplicative groups in a finite field were originally 

proposed. However, the difficulty of the problem 

depends on the group, and at present, the problem in 

elliptic curve groups is orders of magnitude harder than 

the same problem in a multiplicative group of a finite 

field. This feature is a main strength of elliptic curve 

cryptosystems.  

 

8. SECURE HASH ALGORITHM (SHA-1) 
The Hash Algorithm (SHA-1) forms the core of digital 

signatures. Hashing may be defined as the transformation 

of a string of characters into a usually shorter and fixed 

length value or key that represents the original message. 

SHA-1 mainly consists of three steps: 

 

8.1. Formation of message digest 

The formation message digest involves the appending of 
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the message with additional bits resulting in a message 

digest of 512 bits. It includes the following steps. 

 

Step1 : Append padding bits 

The message is so padded so that its length in bits is 

congruent to 448 modulo 512. i.e. the length of padded 

message is 64 bits less than an integer multiple of 512 

bits. Padding is always added even if the message is 

already of the desired length. For e.g. if the message is of 

length 448 bits, 512 bits are added so that length is 960 

bits. Thus the number of padding is from 1 to 512 bits. 

The padding always consists of a 1 bit followed by 0 bits. 

 

Step2 : Append length 

A 64 bit representation of the length in bits of the original 

message(before padding) is appended to the result of 

step1(least significant byte first). If the original length is 

greater than 2
64

, then only lower order bits are used. Thus 

the field contains the length of the original message, 

modulo 2
64

 The outcome of the first two steps yields a 

message that is an integer multiple of 512 bits. 

 

8.2. Initialize buffers 

A 160 bit buffer is used to hold the intermediate and final 

results of the Hash function. The buffer can be 

represented by five 32 bit registers (A,B,C,D,E). These 

are initialized to five 32 bit integers. The hexadecimal 

values are indicated.  

Table (1) Buffer values 

Word A    67    45     23     01 

Word B   EF    CD   AB   89 

Word C   98    BA   DC   EF 

Word D   10    32    54     76 

Word E   C3    D2   E1    F0 

 

8.3. Process message digest in blocks 

The heart of the algorithm consists of four rounds of 

processing each of which has 20 steps. The logic is 

illustrated in figure 3. 

Each round takes place as the current input 512 bit 

message digest block being processed and the 160 bit 

buffer value as the input and updates the contents of the 

buffer. Each round also makes use of the additive 

constant Kt where t ranges from 0 to 79 including one of 

the 80 steps across the four rounds. In fact only four 

distinct values of Kt are used. 

 

9. OPERATIONS IN A SINGLE STEP OF SHA  
The elementary SHA-1 operation, as shown in figure 4, 

involves a single 20 steps which is subjected to four 

rounds to obtain the complete hash process with 80 steps. 

In the figure 4, 

Kt is an additive constant 

Wt is a 32 bit word derived from the current 512 bit block 

Whatever be the length of the message the final output is 

only of 160 bits. i.e. hash algorithm results in a message 

digest of 512 bits.  

 
Fig.3. Hash Process 

 

 

Table (2) Functions in SHA 

Ft(A,B,C,D) Interval 

(B ˄ C) ˅ (B` ˅ D) 0≤ t ≤ 19 

B XOR C XOR D 20≤ t ≤ 39 

(B ˄ C) ˅ (B ˅ (B˄D)) ˅ (C˄D) 40≤ t ≤ 59 

B XOR C XOR D 60≤ t ≤ 79 

 

 

Table (3) Initialization of Kt 

Distinct Values of Kt Interval 

5A82799 0≤ t ≤ 19 

6ED9EBA1 20≤ t ≤ 39 

8F1BBCDC 40≤ t ≤ 59 
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CA62C1D6 60≤ t ≤ 79 

a b c d e

a1 b1 c1 d1 e1

XOR

XOR

<<5 shift ft

XOR

XOR

<<30 shift

Kt

Wt

 
Fig.4. Elementary SHA-1 Operation 

 

10. ELLIPTIC CURVE CRYPTOSYSTEMS  
The elliptic curve crypto systems are used for 

implementing protocols such as ECDSA digital signature 

scheme, EC Elgamal Encryption/Decryption scheme, 

Diffie-Hellman key exchange scheme and so on[1]. This 

paper analyzes the elliptic curve operations of the ECC 

protocol ECDSA.  

 

11. ELLIPTIC CURVE DIGITAL SIGNATURE 

       ALGORITHM (ECDSA)  
The steps involved in ECDSA algorithm are: 

 

11.1. Key pair generation 

Suppose Alice wants to send a digitally signed message 

to Bob: 

(a) Select a random integer, „d‟ in the interval [0, n-1]. 

(b) Compute Q = dG,  Obtained   by   Karatsuba 

     Multiplication. Q,G are  points  on  the  elliptic 

     curve. 

(c) Now Alice‟s key-pair is (d,Q) where d is the Private 

     key and Q is the Public key. 

 

11.2. Signature generation 

(a) Choose a random number k with k : 1≤  k≤  n-1. 

(b) Compute kG = (x1, y1) and r = x1 mod n. If 

      r = 0 then go to step a. 

(c) Compute k
-1

 mod n. 

(d) Compute e = SHA-1(M). 

(e) Compute s = k
-1

(e + dr) mod n. If s = 0 then 

      go to step a. 

(f) Alice signature for the message M is (r, s). 

 

11.3. Signature verification 

(a) Verifiy that r, s are integers in the inteval [1, n-1]. 

(b) Compute e = SHA-1(M). 

(c) Compute w = s
-1

 mod n. 

(d) Compute u1 = ew mod n and u2 = rw mod n.  

(e) Compute X = u1G + u2Q. If X = 0 then reject 

 
Fig.5. Digital Signature Process 

 

 the signature. Otherwise compute v = x1 mod n 

where X = (x1, y1). 

(f) Accept the signature if and only if v = r. 

 

The figure 5 shows the generation and verification of 

digital signatures . Both process use the Hash function of 

the message there by resulting in the message digest. The 

transmitter sends the message which may or may not be 

encrypted, along with the sign to the receiver. The 

receiver also finds the Hash of the received message and 

uses the received sign and the senders public key to 

verify the signature. The generation and verification are 

based on the ECDSA algorithm. 

Appendixes, if needed, appear before the 

acknowledgment. 

 

12. FUTURE SCOPE AND CONCLUSION  
ECC offers the same level of security as that of RSA with 

minimum number of bits, i.e. with small keys and small 

signature size. Through this project we present an 

efficient multiplication scheme that effectively enhances 

the security level of data with small keys and small 

signature size. Also the algorithm provides improved 

authentification through verification of signatures at the 

receiving side. A high performance, generic projective 

coordinate algorithm proposed by Lopez and Dahab can 

be used[2], which is an efficient implementation of 

Montgomerys method for computing kP which requires 

no precomputations or special field/curve properties. It 

can offer the best performance for both point addition 

and point doubling[5]. The proposed algorithm is highly 

parallelizable and well adapted to VLSI implementation 

of elliptic curve crypto systems. 
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