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Abstract — In the present paper, the problem of
computation of all stabilizing high-order time delay
systems using well known and efficient proportional-
integral-derivative (PID) controller is investigated in a
graphical approach. An efficient approach to this
important problem is presented. Based on this
approach, all PID controllers that will ensure stability
are determined in a ),,( dip kkk plane and then the

stability boundary in a ),( di kk plane for a constant

value of pk is determined and analytically described.

It is shown that the stabilizing ),( di kk plane consists

of triangular regions. The generalized Hermite-
Biehler theorem which is applicable to
quasipolynomials and finite root boundaries which
will be described in detail in continuation are studied
to establish results for this design and also
determining region of stability of designed PID
controllers. Bode diagram criterion is used to show
the stabilizing PID gain and phase margins. Step
response is also used to show the correctness and
advantage of the approach in two examples which are
given to illustrate the method.

Keyword — High-order systems, PID controller,
Stabilizing regions, Time-delay.

1. INTRODUCTION
Time delay is the time for system to answer a specific
command after exerting an input. It can be also defined as
the required time between applying change in the input
and notices its effect on the system output. Delay can be
seen in most of systems and its effects are considered in
synthesis and analysis of systems. Delays are often causes
for instability and poor performance of system and make
stability analysis and controller design difficult.
Most of classical methods used for controller design
cannot be used with delayed systems. This is due to the
fact that the system’s future behaviors depend not only on
the current value of the state variables, but also some past
history of the state variables.

In last decades widespread studies over time delay
systems have been done. Main reasons for this
development can be stated as follows [1]:

I. Delays are frequently used to simplify high-
order models.

II. It can be shown that delay in difference
equations can be achieved partially easy by
simplification of system model.

On the other hand, PID controllers are used frequently in
various engineering applications. Due to this
comprehensive use of PID controllers in industrial and
applications, a significant effort has been done to
determine the set of all PID controllers that meet specific
design goals [2]. The design was done by Ziegler and
Nichols [3] for the first time and many formulas and
equations have been extracted for different proposed
design methods after the publication of the first design
[4].
In attention to the great industrial use of this kind of
controller and also the point that time delays are usually
unavoidable in many mechanical and electrical systems,
we can claim that even a partial improvement in PID
design can be theoretically or practically effective and
useful.
For this great controller many design methodologies have
been studied and made. For example, in [5], the D-
decomposition approach has been used to determine the
stabilizing region of PID controllers. A characterization
of all stabilizing PID controllers for an arbitrary plant in a
computational way has been proposed in [6]. In [7], a
parametric Kharitonov region for the PID controllers to
guarantee stability and robustness has been proposed. A
generalization of the Hermite–Biehler theorem has been
used for determining the stabilizing PID controller based
on the inverse Nyquist plot in [8]. The [9] computes the
stabilizing PI and PID controllers to achieve gain and
phase margins for processes with time delay.
Recently, the problem of finding the stabilizing PID
controllers for high-order delayed systems positive or
negative, has been studied in [10]. Nyquist criterion is
another subject in dealing with high-order unstable
delayed plants which were studied in [11].
In this paper, we present a simple and efficient approach
for determining the stabilizing PID controllers for high-
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order time delay systems based on generalization of the
Hermite-Biehler theorem is presented in a graphical
approach. We also use the theorem of finite root
boundaries which will be described in the next section to
get better results by which the region of stability is
determined and also plotted.
Bode plot is used to show the stabilizing PID gain and
phase margins in the illustrative examples.
It's worthy to note that step response plot is also used to
show the correctness of our proposed stabilizing method.
The organization of this paper is as follows: In Section 2,
the problem is stated. We also state a definition and also
two important theorems which help us with getting
desired and trustworthy results. Section 3 shows
stabilization using a PID controller method. In this
section our approach of design is explained clearly and all
stabilizing PID parameters are determined. Section 4
shows illustrating of the approach by two examples which
will be analyzed by MATLAB and simulation results will
show the advantages of this approach. Finally, in section
5, the main conclusions are summarized.

2. PROBLEM FORMULATION AND

PRELIMINARIES
PID is a combination of three controllers: proportional,
derivative and integral controller. One of the main
interesting features of PID controllers is their simplicity.
The most general form of then is the second order system
in the s-domain defined as follows:
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The degree of the denominator is higher than that of the
numerator in this representation. Equivalently it would be
strictly proper, and 2 mn in this study.

Fig.1. Unity feedback control system.

The goal in this computations is to find the regions in
terms of

pk ,
ik , and

dk such that the closed loop

characteristic polynomial of the system in fig 1 be
Hurwitz stable.
The characteristic polynomial is written as

)()(1)( sGsKs  (3)

Let  js ,

So
)()(1)(  jGjKj (4)

Definition 1 [8,12]. Let )()()( 22 ssss oe  be a

given real polynomial of degree n, where )( 2se and

)( 2ss o are the components of )(s made up of even

and odd powers of s, respectively.

Definition 2 [13]. A finite root boundary in the  id kk ,

plane for a constant value of pk is the locus, where

characteristic function of fig 1 has a root  js on the

imaginary axis with a finite R . If 0 , the root

boundary is called a real root boundary (RRB) and
when 0 , it's a complex root boundary (CRB). If the

root boundary is crossed from its unstable side, the
corresponding root moves from the right half plane
(RHP) to the LHP.
Theorem 1 [8,12].

Let n
nsss   ...)( 10 be a given real

polynomial of degree n, numbers of roots of )(s in left-

half plane and right-half plane, are denoted by l and r
respectively, and rl  )( . Then
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This is called "Generalization of the Hermite-Biehler
Theorem".
Theorem 2 [13]
Given a delayed system with the (2) and a pkf )(

fulfilling the conditions in Definition 2, the finite root
boundaries in the  id kk , plane for a fixed value of pk

are the following lines

I. 0,0 0  aifki and 0fk p  (RRB),

II. 0,0 0  aifki and 0fk p  (RRB),

III. )(2
  gkk di for all


  (CRB)

IV. )(2
  gkk di for all


  (CRB)

with

 )cos()()sin()()( 12 LfLfg 
)(lim 00   ff , which exists for .00 a

This is named as "Finite-root-boundaries- Theorem".
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All of these theorems and preliminaries are used in
getting better results which are shown in coming
examples for instance.

3. ALL STABILIZING PID CONTROLLERS
The stabilizing techniques used in this paper are based on
decomposing the delayed system into real and imaginary
parts and then using theorems and definitions in previous
section. It can result in graphical method which is capable
of ensuring closed loop stability of system.
The following four steps are proposed to find the
boundaries of a PID controller that ensure the stability.

I. Decompose the frequency form of the system
without delay into real and imaginary parts, and
substitute them into (15)-(16) to obtain the PID
parameters.

II. Analyze the system in presence of time delay,
and redo the procedures.

III. Determine the PID stability boundaries of the
system using their related equations in this
section and theorems 1 and 2.

IV. Finally, plot the all stabilizing regions and then

ik versus dk for a stabilizing constant value of

pk .

This approach is used in our example and the results
show the advantages of it in the next section.
Now the following equations are represented in the
frequency domain.
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By expanding )(  j into real and imaginary parts, (6)

can be written as
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Now all stabilizing regions can be determined like what is
shown in "figs" 2 and 5. Note that we complete the

calculations here just for a constant value of dk in the

 ip kk , plane, for brevity. The other cases are obtained

similarly. Of course they can be seen in our example
results completely. Looking through the frequency-

domain form of PID controller in (6), it is clear that ik

and dk are at the imaginary part and they would be

depend on each other. Of course this point is clear in

coming equations and using theorems 1 and 2 help us in
determining stabilizing regions.

By putting (8)-(9) equal to zero, we have
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It can be written that
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Therefore, (11) ad (12) can be simplified as
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Although it's somewhat similar to the way used in [9], but
the final equations in (15) and (16) are main concerns
here which have not been considered in [9]. Based on

these equations, it can be claimed that the pk only affects

the odd frequencies of the roots of (5), whereas the even

frequencies of roots of (5) are influenced by ik and dk .

Now all the stabilizing boundary for ),,( dip kkk is

determined first and then ik versus dk is plotted based

on theorem 2 for a constant value of pk in its stabilizing

boundary. Bode plot can be used for determining
stabilizing gain and phase margins in this condition.
According to Theorem 1, when designed PID controller

makes system stable, numbers of roots of )(s in left-

half plane are equal with degree real of polynomial
)( nl  and there be no number of roots of )(s in

right-half plane )0( r .

We also should consider the roots of )(sG which may

have some roots in right-half plane which we call them
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Dr and also some roots in left-half plane which we call

them Dl , in this paper. By simplifying )(sG into (15)-

(16), according to theorem 1 there should be at least

DD lrn  roots in left-half plane. Now, Stability

conditions and then the stability regions can be obtained.
This approach is illustrated by examples in the next
section.

4. ILLUSTRATIVE EXAMPLES

Example 1:
In this example we consider a third order unstable
transfer function time delay system

se
s

sG 5.0
3)1(

1
)( 




which has been analyzed in [5].

At first the region of stability of pk is determined. Using

Theorems and explanations in the previous sections,
system is unstable in the intervals of 0.852)(-  and

)37.5(  .  As a great result, the possible stabilizing

region of pk is the interval )5.37852.0(- .

Therefore, all stabilizing regions for the PID controller
are shown in fig 2.

Now we choose a fixed pk in this region and then

determine the stabilizing region of ik and dk and this

region is plotted and shown in fig 3.
Now after determining the stabilizing boundary of
different controllers of PID, the step response of the
closed loop system is plotted for a special case,

3.189,186.1,1  idp kkk . From fig 4, we can

see that the closed-loop system is stable. According to fig

5, stabilizing phase margin is obtained 5.49 at

frequency
sec

rad
0.468 , which can be concluded as a great

result. Gain margin is also dB35.7 at frequency

sec

rad
2.36 which is another good factor for this design.

Fig.2. All stabilizing boundaries of the PID
controller.

Fig.3. Stability boundaries in the ),( di kk plane for

1pk .
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Fig.4. Closed-loop step response for system
considered at example 1.
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Fig.5. Bode diagram of the system at example 1.

Example 2:
In this example we consider one form of high-order

transfer function which has been considered in [14], as
follows:

se
ss

sG 1.0
3)12.0)(14(

1
)( 




Again we want to find all stabilizing PID controllers so
that the closed loop system would be stable.
Using (15), theorems 1 and 2 we obtain the stabilizing

interval of pk . Therefore, system is unstable in the pk -

intervals of 1.12)(- and )(19.2  . As a great

result, the possible stabilizing region of pk is the

interval )19.212.1( .

In other words, the imaginary part )(s has only simple

real roots if and only if )5.37852.0(-pk .

All stabilizing regions for the PID controller are shown in
fig 6.

Now we choose 5pk which is in this region and then

the stabilizing region of ik and dk is determined and this

region is plotted and shown in fig 7.
Here in this special case, the PID controller parameters
and transfer function are

3.84,6.25,5  idp kkk

)
814.1

1314.3(2)(


 jjK

It can be written that the PID controllers that ensure

stability in the ),( di kk plane for a constant value of pk
have been determined in a well defined set and region. In

this example, we have considered 5pk which is in the

stability boundary obtained in previous computations.
By determining the possible stabilizing region, we plot
the step response of the closed loop system in fig 8 to
show the stability.
Bode diagram for closed-loop system is shown in fig 9
which illustrates that stabilizing gain and phase margin
are achieved and the design procedure and evaluation are
ended.
According to this fig, we can see that desired phase

margin ( 3.54 ) at frequency
sec

rad
2.79 , has been

achieved. Gain margin is also dB89.5 at frequency

sec

rad
5.24 .

Fig.6. All stabilizing regions for the PID controller.

Fig.7. Stability boundaries in the ),( di kk plane for

5pk .
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Fig.8. Closed-loop step response for example 2.
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Fig.9. Bode diagram for closed-loop system of second
example.

5. CONCLUSION
In this paper, we presented a graphical approach to
design all stabilizing PID controllers for high-order
systems with time delays. It provides an efficient and
straightforward method for stabilization of PID
controller. We could obtain all stabilizing PID controller

in ),,( dip kkk plane and also the stabilizing regions of

),( di kk for a fixed value of pk , as well. Avoiding

complex mathematical derivations and good quality and
efficiency are some advantages of this approach.
Numerical examples with time delay were presented to
demonstrate the effectiveness of this method.
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