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Abstract:— Plane wave solutions of the fully 
fractional Schrödinger equation were proposed 
and represented in terms of exponential function. 
The plane wave solutions satisfied the fractional 
time-dependent Schrödinger equation. The 
Uncertainty Principle was obtained from the 
solution in the one-dimensional case using  as a 

fractional order parameter of the space and time 
derivatives. For the integral value of the fractional 
parameter , the standard solution of the 

Schrödinger Equation was recovered. Some 
physical quantities such as the Mean Square 
Distance and expectation of the fractional 
momentum were evaluated. For the integral value 
of =1 the expressions of these physical 

quantities returned to standard quantum 
mechanical formulae. 
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1. INTRODUCTION 
Applying partial fractional equations to the diffusion 
equation has made it possible to describe complicated 
systems with strange behavior in much the same way 
as simpler systems. Numerous authors [1-10] have 
studied many examples of a fractional harmonic 
oscillator, homogeneous fractional ordinary 
differential equations, a fractional diffusion equation 
and a wave equation. Solutions of fractional order 
homogeneous and non-homogenous partial 
differential equations and integral equations have 
also been considered [7-9]. A large body of scientific 
work has been published using the methods of 
fractional calculus to study quantum phenomena [11-
15]. The Schrödinger equation has been generalized 
using partial fractional equations in many ways, 
including, (a) keeping the first order time derivative 
and generalizing the fractional space derivative [14, 
16] and (b) including the fractional order of the time 
derivative but retaining the space derivatives [12, 13]. 
There also exist more generalized forms of the 
Schrödinger equation where both space and time 
derivatives of fractional order are considered [17]. In 
these studies, fractional derivatives of the Caputo or 
Riemann-Liouville types were employed. In works 
[14, 16], the space-time Schrödinger equation (STSE) 
was derived using the Feynman path integral 
technique and Levey-like quantum paths. However, 
the STSE was still first order in the time derivative, 

and only the space derivatives were extended to 
fractional-order. Parity conservation and the current 
density were explored using Riesz’s fractional 
derivative. Applications of STSE have covered the 
dynamics of a free particle in the infinite well, a 
fractional Bohr atom and a quantum fractional 
oscillator [16]. In work [13], the fractional time 
derivative was introduced by replacing the time 
derivative and the imaginary number with a 
derivative of fractional order, leaving the space 
derivative intact in the Schrödinger equation. More 
recently [12], a fractional time-dependent 
Schrödinger equation was derived using the Feynman 
path integral technique, showing that there was no 
need to raise the power of the imaginary number i to 
fractional-order, while leaving the space derivative 
intact. 
 
In the present work, modifications to the Schrödinger 

equation were considered in both time and space 

fractional-order derivatives, based on work [11]. A 

fractional plane wave solution was considered, which 

satisfied the fully generalized fractional-order 

Schrödinger Equation (FSE); also, the generalized 

Uncertainty Principle was verified as a check.  In 

addition, the Mean Square Distance (MSD) was 

calculated using the proposed fractional solution.  In 

this paper, we were concerned with fractional 

derivatives of order  as the fractional parameter for 

the space and time derivatives of the FSE. The 

physical significance of the parameter  is that the 

variations are coarse-grained in the space-time, as 

mentioned in [18, 19]. 

2. FRACTIONAL WAVE EQUATION 
Consider a Fractional Schrödinger Equation (FSE) of 
the form, 
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,  is the reduced Planck’s constant, m  is the mass of 

the particle and ( ,t) x is a wave function associated 
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with units of
2 .sm  

, respectively. In the event

1  , these constants return to standard constants. 

Essentially, Eq. (2.1) is obtained by replacing the 

momentum operator with 
xp i D    and the 

energy operator with
tE i D   in the equation

2

(2 )

p
E

m





 .  We solve this equation in 1-D with the 

following boundary conditions: 

0(x 0)= (x)

(x ,t) 0 as x , 0.t

 

   

,
                 (2.2)  

In the literature, we found several fractional calculus 
formulae (see [18] and [19]) which for the sake of 
brevity are listed below: 

1. Fractional Integrals with respect to ( )dx 
 

0

0

1
( ) ( ) ( )

( )

1
( ) ( )( ) 0 1

( 1)

( ) / ( 1)

x

x

x

x

I f x x f d

I f x f d

dx x

 

 

 

  


  





  




  
 

   









          (2.3)  

 
2. Some fractional derivative formulae: 

 
 

 

      

 
2

1

1

( ) ( ) ( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( ) ( )

2( !)

x

x x x

x u x x

x

D x x

D u x v x D u x v x u x D v x

D f u x f u x D u x D f u x u x

D x x

   

  

  

  



 



 

  

        
   





(2.4)

 

The normalized solution that satisfied the FSE, Eq. 
(2.1), in terms of space and time may be written in the 
form: 
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where the beta function is defined as 
2
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The constant a  represents an initial Gaussian width 

of the initial wave. Note that the wave function given 
in Eq. (2.5) satisfies the fractional Schrödinger 
equation (2.1). This can be verified using the 
fractional derivatives provided in Eq. (2.4).  Also, 
using the wave function in Eq. (2.5), we would obtain 
the quantum mechanical probability density by taking 
the complex conjugate of the wave function and 
multiplying it by the wave function itself,

*( , )P x t    . The expression for the probability 

density is:  
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The function c(t) in the above probability function is 
given below: 
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Note that as 1   the expressions in Eqs. (2.5-2.8) 

returns to the standard quantum mechanical 
expressions [11].  
 

3. FRACTIONAL UNCERTAINTY PRINCIPLE 
An important physical quantity, the Fractional Mean 
Square Distance (MSD), may be calculated using the 
quantum mechanical probability in Eq. (2.7) and 

integrating with respect to ( )dx 
 using the formulae 

in Eq. (2.3), which yields: 

2 2 21

2
x a c  .               (3.1) 

The square root of Eq. (3.1) provides an expression 
for uncertainty in the position.   

1
( )

2
x a c  .                                                (3.2) 

The above expression in Eq. (3.2) as 1  reduced 

to the standard result for uncertainty in the position x. 
It is straightforward to calculate the expectation value 
of the Fractional Momentum Squared with a 
fractional-order of  and carry out fractional 

integration, yielding: 
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The factor gamma squared can be absorbed in the 
momentum. Here, a normalized initial Gaussian wave 
function of the form has been used in the integration 
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Taking the square root of Eq. (3.3), one would get 
uncertainty in the momentum, 

1
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The fractional uncertainty principle is just the product 
of both expressions given in equations (3.2) and (3.5), 

( ) ( 1) , 0 1
2

x p c


         .                  (3.6) 

The expression of c(t) is provided in Eq. (2.8). The 
above expression with t = 0 and 1  reduces to the 

well-known Heisenberg Uncertainty Principle given 
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by
2

x p   . The new expression in Eq. (3.6) is a 

generalized fractional uncertainty principle. Here we 
varied the value of 2 / 3, 3 / 4, 0.85, 1  and we get 

new expressions for uncertainty values that are 
greater than / 2 for  < 1. The above evaluations 

show that fractional calculus is a powerful tool that 
can be used to solve general problems and the 
reduction leads to the known standard quantum 
mechanical results when integral values of fractional 
order   are used. 
 

4. CONCLUSION AND REMARKS 
We have considered the Fractional Schrödinger 
equation (FSE) and found its Plane wave solution that 
satisfied the equation (2.1), and with the help of the 
fractional derivatives provided in Eq. (2.4), it can be 
verified. The proposed solution satisfies the fractional 
uncertainty principle; for the integral value of =1, 

the FSE and the uncertainty principle were recovered 
as found in standard quantum mechanics. 
Applications of the time-independent fractional 
Schrödinger Equation will be considered in a 
forthcoming publication. Several new formulae are 
presented for various quantum mechanical quantities 
such as the fractional mean square distance and the 
uncertainty principle. More detailed properties of the 
fractional wave equation and its possible applications 
to the physical problems will be considered in future 
research. 
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