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Abstract — The unsteady incompressible free 

convection boundary layer equations in two 

dimensions, with heat transfer have been solved 

numerically using finite difference method. The 

unsteady free convection flow with flow control 

parameter effect is presented in this work. The 

governing second order differential equations are 

derived from the fluid motion (Navier-Stokes 

equation) and heat conduction (energy equation) 

equations. Mathematical formulation of boundary 

layer equations have been non-dimensional zed by 

using dimensionless variables. These non-dimensional 

boundary layer equations are non-linear and partial 

differential equations and are solved by finite 

difference method. The fluid particles such as 

air  0.71rP  , water at 20
0 

C  0.70rP   and salt 

water  1.0rP  are considered. In different Eckert 

numbers and for various Grashoff numbers as well as 

Prandlt numbers, the results of velocity and 

temperature are displayed in the form of level curves 

for both the temperature and velocity function. 

 

Keyword  — Eckert number, Prandlt number, 

Grashoff number, Thermal expansion coefficient. 

 

1. INTRODUCTION 
In the studies related to heat transfer, considerable effort 

has been directed towards the convective model, in which 

the relative motion of the fluid provides an additional 

mechanism for the transfer of energy and material, the 

later being a more important consideration in cases where 

mass transfer, due to concentration difference occurs. 

Convection is inevitably coupled with the conduction 

mechanism, the eventual transfer of energy from one 

fluid element to another in its neighborhood is thorough 

conduction. The usual way is to first consider heat 

transfer without mass transfer, and present at a large stage 

a briefing of similarities and differences between heat 

transfer and mass transfer, with some specific examples 

of mass transfer applications.  

There are complex problems where heat and mass 

transfer processes are combined with chemical reactions, 

as in combustion. In processes such as drying, 

evaporation at the surface water body, energy transfer in a 

wet cooling tower and the flow in a desert cooler, heat 

and mass transfer occur simultaneously. In many of these 

processes, the interest lies in the determination of the total 

energy transfer, although in processes such as drying, the 

interest lies mainly in the overall mass transfer for 

moisture removal. Natural convection processes 
involving the combined mechanism are also encountered 

in many natural processes, such as evaporation, 

condensation and agricultural drying, in many industrial 

applications involving solutions and mixtures in the 

absence of externally induced flow and in many chemical 

processing systems.    

The natural convection boundary-layer flow generated in 

the fluid adjacent to a heated, vertical semi-infinite plate 

is one of the fundamental flows in heat and mass transfer. 

Most studies have examined the fully developed flow 

with relatively few investigations of the transient 

response to impulsive heating. The transient response of a 

stably stratified fluid adjacent to a vertical semi-infinite 

plate subjected to an impulsively applied constant heat 

flux boundary condition will be investigated for flow 

Prandlt number 1rP  . Flows with  1rP   have many 

important applications; in particular liquid metals with 

1rP  have been used for rapid cooling in nuclear 

reactors (1972, 1991, 1999) [1-3]. 

Semi-analytic solutions for the steady flow adjacent to a 

constant heat flux vertical semi-infinite plate have been 

obtained by a number of workers by reducing the 

governing equations to a set of ordinary deferential 

equations which are then integrated numerically (1956, 

1969) [4,5]. Such an approach can be used to obtain the 

solution at specific prandlt number, but does not provide 

scaling, and has also been shown to have difficulty 

dealing with very small Prandlt number (1969) [5]. 

Additional investigations of the steady flow have been 

carried out using the integral method of Karman-

Pohlhausen and using singular perturbation techniques 

(1974) [6]. These results did not provide explicit Prandlt 

number scaling. Park and Carey  (1985)[7] combined a 

matched asymptotic expansion technique with a explicit 

finite-difference scheme to investigate the transient 

natural convection flow near a vertical surface at low 
Prandlt number; Sammounda, Beighith and Surry 

(1999)[3] used a finite element simulation to investigate 

the transient natural convection of low Prandlt number 

fluids in a heated cavity; the low Prandlt number 

convection in volumetrically heated rectangular 

enclosures with different aspect ratios was explored by 

direct numerical two-dimensional simulation by Piazza, 

Ciofalo and Arcidiacono (2000,2001) [8-9]. 
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The investigation cited above focused on the unsteady 

natural convection boundary-layer flow in an initially 

quiescent homogeneous ambient fluid. However, in many 

problems of practical interest the ambient fluid is at a 

non-uniform temperature, and is typically stably 

stratified. Park and Hyun (1998, 2002)[10,11] 

investigated the transient adjustment process of an 

initially stationary and stably stratified fluid in a square 

container with highly conducting boundary walls, while 

Chamkha (2002)[12] investigated the laminar. 

However there has been no study that examines the 

Prandlt number effect on the flow behavior adjacent to an 

evenly heated semi-infinite plate with a stratified ambient 

for low Prandlt numbers for the complete problem of 

start-up, transition and full development, which motivates 

the present investigation. In this study, we will develop 

various scaling laws for the dominant parameters 

characterizing the transient behavior of an unsteady 

natural convection boundary-layer flow of an initially 

linearly-stratified Newtonian fluid with  adjacent 

to a semi-infinite vertical plate heated  with a uniform 

flux, using the techniques detailed by Patterson and 

Imberger (1980) [13] and Bejan (1995)[14]. 

The remainder of this study is organized as follows. The 

equation of conservation of mass or equation of motion 

for inviscid fluid, Navier-Stokes equation in vector form 

with Cartesian coordinate, equations of energy  and 

finally Mass transfer have been derived and discussed. 

Concept of boundary layer in two dimensional flows, 

derivation of thermal boundary layer with concentration, 

derivation of thermal boundary layer equation in terms of 

energy equation and the model has been formulated. 

Finally, unsteady free convection floe with flow control 

parameter has been discussed graphically. 

 

2. MATHEMATICAL MODEL OF FLOW  
Introducing the Cartesian co-ordinate system the x-axis is 

chosen along the plate in the direction of flow and the y-

axis is normal to it. Initially we consider that the plate as 

well as the fluid is at the same temperature ( )T T . Also 

it is assumed that the fluid and the plate is at rest after 

that the plate is to be moving with a constant velocity 0U  

in its own plane and instantaneously at time 0t  , the 

temperature of the plate raised to  wT T  which is 

there after maintained constant, where wT  is temperature 

at the wall and T is the temperature of the species far 

away from the plate.  The physical model of the study is 

furnished in the flowing Figure 1 

 

 

 

 

 

 

 

 

 
FIG. 1. Physical configuration and co-ordinate system of 

model. 

Within the framework of the above stated assumptions 

with reference to the generalized equations described in 

chapter 4, the equation relevant to the transient two 

dimensional problem are governed by the following 

system of couple non-linear partial differential equations 

 

Continuity equation 

0
u v

x y

 
 

 
                                                               (1) 

Momentum equation 

 
2

2

u u u u
u v g T T

t x y y
  

    
     

           

  (2) 

Energy equation 
22

2

p p

T T T k T u
u v

t x y C y C y





       
      

          (3) 

With corresponding initial and boundary conditions 

 0, 0, 0,   t u v T T    , everywhere      

(4)

0, 0, 0

0, 0, 0, 0

0, 0,

w

u v T T as x

t u v T T at y

u v T T as y





   


    
    

      

      

     

           

(5) 

Where,  

,x y  = Cartesian Co-ordinate system; 

,u v  = ,x y  component of flow velocity respectively is 

the local acceleration due to gravity; 

 = the kinematic viscosity; 

 = the density of the fluid; 

k = the thermal conductivity;   

pC =the specific heat at constant pressure. 

2.1 Mathematical Formulation 

Since the solutions of the governing equations (1) to (3) 

under the initial conditions (4) and boundary condition 
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(5) will be based on a finite difference method. It is 

required to make the equations dimensionless. For this 

purpose we introducing following dimensionless variable. 

Let  

0 0

0

; ; ;      
xU yU u

X Y U
U 

    

2

0

0

; ;      
w

tUv T T
V T

U T T


 

 
  


 

       

0 0

, ,      
X Y

x y
U U

 
 

 
Using these relations, we have the following derivatives, 

3

0 0

0

U U Uu U

t

U

  

 
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 


, 

2

0 0

0

U U Uu U

x X
X

U

 

 
 

 


, 

2

0 0

0

U U Uu U

y Y
Y

U

 

 
 

 


, 

 

2 2 32 2 2
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2 2 2

0

U U Uu U U U

vy y Y Y
Y Y

U

  
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   

      
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2
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0

U V Uv V

y Y
Y

U

 

 
 

 


, 

   2

0

2

0

w wT T T U T TT T

t

U

  

    
 

 


, 

   0

0

w wT T T U T TT T

x X
X

U

 

    
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 


, 

   0

0

w wT T T U T TT T

y Y
Y

U

 

    
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 


, 

Now putting these values in equations (1),  

     

0
u v

x y

 
 

 
 

2 2

0 0 0
U UU V

X Y 

 
  

 
 

0
U V

X Y

 
  

 
  ; satisfying the continuity equation. 

Equation (2) becomes, 

     

 
2

2
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

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2
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U U U U
U V G T
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   
    
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Here,  Grashoff Number,  

 3

0

r w

g
G T T

U


         

 2 2 1 1

3 3
1

LT L T

L T

   


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And thermal expansion coefficient, 

 

length

length temperature difference
 


 

    
1               

Again, equation (3) becomes, 
22

2

1
c

r
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U V E
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Here,     

rP Prandtl number=
pC

k


 

 cE Eckerd number 
 

2

0

p w

U

C T T




  

Again, we prove that rP  and cE  are dimensionless 

parameter. 

p

r
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k
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Now we get the following non-linear coupled partial 

differential equation in terms of dimensionless variables, 

0
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X Y
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2

1
c

r
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Also the associate initial and boundary conditions 

becomes, 

0,    0,  0U V T      Everywhere, 

0,    0,  1    0

             0,  0    X 0

U V T at Y

U V T at

     

                                                                      

            
0,  0    U V T as Y   

 
 

3. NUMERICAL SOLUTIONS 
From the concept of the above discussion for simplicity 

the explicit finite difference method has been used to 

solve equations subject to the conditions which given. 

To obtain he difference the equations, the region of the 

flow is divided into a grid or mesh of lines parallel to X  

and Y  axes. Where X -axes is taken along the plate and 

Y -axis is normal to the plate. Here we consider that the 

plate f height max 100X  . 

i.e., X  varies from 0 to 100 and regard max ( 25)Y  as 

corresponding to Y  . 

i.e., Y  varies from 0 to 25. There are 125m   

and 125n   grid spacing in the X  and Y direction 

respectively as shown in figure 2. 

It is assumed that X , Y are constant mesh sixes along 

X andY direction respectively and taken as follows  

 

 

2.0 0 100

0.5 0 25

X x

Y y

   
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With the smaller time step, 0.05   

We can draw the chart for finite difference method. 

Here, , , &U V T C    denote the values of 

, , &U V T C at the end of a time step respectively, using 

the finite difference approximation. We have, 
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                                                                         (6) 

From the system partial difference equations with 

substituting the above relations into the corresponding 

differential equation we obtain an approximate set of 

finite difference equations. 
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FIG. 2.  The Finite difference space grid. 

   

2

2r

U U U U
U V G T

X Y Y

   
   

     

, , , 1, , 1 ,i j i j i j i j i j i jU U U U U U
U V

X Y

 
   

  
  

  

, 1 , , 1

2

2i j i j i j

r

U U U
G T

Y

  
 


                                (8) 

22

2

1
C

r

T T T T U
U V E

X Y P Y Y

     
     

     
   

, , , 1, , 1 ,i j i j i j i j i j i jT T T T T T
U V

X Y

 
   

  
  

2

, 1 , , 1 , 1 ,

2
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Here the changing initial and boundary conditions are 
0 0 0

, , ,0, 0, 0    i j i j i jU V T                               (10) 

0, 0, 0,

,0 ,0 ,0

, , ,

0, 0, 0

0, 0, 1

0, 0, 0

n n n

j j j

n n n

i i i

n n n

i L i L i L

U V T

U V T

U V T

  

  

  

    

    

    

 Where L  (11) 

Here the subscripts i and j designate the grid points with 

x and y coordinates respectively and superscript n  

represents a value of time, n   where 

0,1,2,3....................n  From the initial condition 
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(6), the values of  ,U T  are known at 0.   During any 

one time step, the coefficients 
,i jU

 
and 

,i jV appearing in 

(6) are created as constants. Then at the end of any time-

step  the temperatureT  , the new velocityU  , the 

new induced velocity field V  at all interior nodal points 

may be obtained by successive applications of equations 

(7), (8), (9) respectively. This process is repeated in time 

and provided the time-step is sufficiently small, 

, ,U V T should eventually converge to values which 

approximate the steady-state solution of equation (7)-(9). 

These converged solutions are shown graphically. 

 

4. RESULTS AND DISCUSSION 
Unsteady free convection flow with flow control   

parameter past a finite vertical plate in presence of heat 

transfer has been studied. The governing equations of the 

flow field are solved employing finite difference method 

and approximate solutions are obtained for velocity field 

and temperature field. The main goal of the computation 

is to obtain the steady-state solution for the non-

dimensional velocity U and temperature T for different 

values of Grashoff number rG  at Prandtl number 

0.71rP   and Eckert number 0.01Ec  , different 

values of Prandtl number rP  at Grashoff number 

1.0rG   and Eckert number 0.01Ec   and different 

values of Eckert number Ec  at Grashoff number 

1.0rG   and Prandtl number 0.71rP  . For this 

purpose computations have been carried out up to 

dimensionless time 80  .  The results of the 

computations show little changes for 10  to 60  . 

But after 60   to 80  the results remain 

approximately same. Thus the solution for  are 

essentially steady-state solutions. Along with the steady-

state solution for the transient values of U and  is 

shown in FIG (3-14) for time 
 
respectively. 

The most important fluids are atmospheric air, water and 

saltwater. So the results are limited to 0.71rP  ( 

Prandtl number for air and many other 

gases), 7.00rP  ( Prandtl number for water at 
020 C ) 

and 1.0rP  ( Prandtl number for saltwater). 

4.1 Velocity Field 

The velocity of flow field is found to change more or less 
with the variation of the flow parameters. The major 

factors affecting the velocity of the flow field are 

Grashoff number for heat transfer , Eckert number  

and Prandlt number . The effects of these parameters on 

the velocity field have analyzed with the help of FIG (3-

11). 

In between FIG [3, 4] we depict the effect of Grashoff 

number for heat transfer on velocity. The values of 

another parameter Eckert number  and 

Prandlt number  are constant. The Grashoff 

number for heat transfer is found to enhance (upward) 

velocity at all points due to the action of free convection 

in the flow field. FIG [5, 6] presents the effect of Prandlt 

number on velocity of the flow field. The presence of 

heavier Prandlt number in the flow field is found to 

decelerate velocities at all points. In FIG [7, 8] we depict 

the effect of Eckert number on the velocity of the flow 

field. It is obvious that an increase in the Eckert number 

results in as increase in the velocity of the flow field at all 

points. 

4.2 Temperature Field  
The temperature of the flow field suffers a substantial 

change with the variation of the flow parameters such 
as Prandle number , Eckert number  and Grashoff 

number . These variations are shown in FIG (9-14). 

FIG [9, 10] represents the effect of Prandlt number 

against  on the temperature field keeping other 

parameters of the flow field constant. It is observe that an 

increase in the Prandlt number decreases the temperature 

of the flow field at all points. In FIG [11, 12], we analyze 

the effect of Eckert number on the temperature field. A 

growing Eckert number is found to increase the 

temperature of the flow field at all points. FIG [13, 14] 

depict remarkable effect of Grashoff number against  on 

the temperature field  keeping other parameters of the 

flow field constant. It is obvious that an increase in the 

Grashoff number results in an increase in the temperature 

of the flow field. 

The effective changes are follows. 

 
FIG. 3. Velocity profile for different values of Grashoff 

number rG  with fixed Eckert number 0.01cE  and 

Prandtl number 0.71rP   at a time 10  . 
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FIG. 4. Velocity profile for different values of Grashoff 

number rG  with fixed Eckert number 0.01cE  and 

Prandtl number 0.71rP   at a time 60  . 

 

 
FIG. 5. Velocity profile for different values of Prandtl 

number rP  with fixed Eckert number 0.01cE  and 

Grashoff number 1.0rG   at a time 10  . 

 
FIG. 6. Velocity profile for different values of Prandtl 

number rP  with fixed Eckert number 0.01cE  and 

Grashoff number 1.0rG   at a time 60  . 

 

 
FIG. 7. Velocity profile for different values of Eckert 

number cE  with fixed Prandtl number 0.71rP 
 
and 

Grashoff number 1.0rG   at a time 10  . 
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FIG. 8. Velocity profile for different values of Eckert 

number cE  with fixed Prandtl number 0.71rP 
 
and 

Grashoff number 1.0rG   at a time 60  . 

 

 
FIG. 9. Temperature profile for different values of Prandtl 

number rP  with fixed Eckert number 0.01cE  and 

Grashoff number 1.0rG   at a time 10  . 

 
FIG. 10. Temperature profile for different values of 

Prandtl number rP  with fixed Eckert number 

0.01cE  and Grashoff number 1.0rG   at a time 

60  . 

 

 
FIG. 11. Temperature profile for different values of Eckert 

number cE  with fixed Prandtl number 0.71rP 
 
and 

Grashoff number 1.0rG   at a time 10  . 
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FIG. 12. Temperature profile for different values of Eckert 

number cE  with fixed Prandtl number 0.71rP 
 
and 

Grashoff number 1.0rG   at a time 60  . 

 

 
FIG. 13. Temperature profile for different values of 

Grashoff number rG  with fixed Eckert number 

0.01cE  and Prandtl number 0.71rP   at a time 

10  . 

 
FIG. 14. Temperature profile for different values of 

Grashoff number rG  with fixed Eckert number 

0.01cE  and Prandtl number 0.71rP   at a 

time 60  . 

 

5. CONCLUSION   
Unsteady heat and mass transfer problem by free 

convention flow of an incompressible viscous fluid past 

an moving semi-infinite vertical plate under the different 

fluid pattern is taken into account. The plate as well as the 

fluid is considered at the same temperature and the 

concentration label is same. The results are discussed for 

different values of important parameters as Prandlt 

number, Eckert number, Grashof number. The important 

findings of these model are very effective for any kind of 

change of parameters. In all those parameters the Prandlt 

number (visible change for various fluid) as well as 

Grashof number are the main objective for our work, 

which has attracted the interest of any investigators in 

view of its important applications. Also the numerical 

solution gives clear information about the work. 

 

APPENDIX 
 : Co-ordinate along the plate surface 

 : Co-ordinate normal to the plate surface 

 : Velocity component in  x -d irec t ion  

 : Velocity component in  y -d irec t ion  

 : Local  fluid  densi ty  

 : Co-efficient  o f  viscosi ty  

 : Molecular  Prandtl  number  o f the fluid  

 : Hydrostatic pressure 

 : Kinematic  viscosity  

 : Ecker t  number  

 : Thermal Grashof number 

 : Dimensionless velocity of the fluid in the  

direction respectively. 



 Current Trends in Technology and Science 

ISSN : 2275-0535. Volume : II, Issue : I 
  

 

Copyright © 2012 CTTS.IN, All right reserved 

201 

 : Time 

 : Temperature of the fluid in the boundary layer 

 : Ambient fluid temperature 

 : Plate temperature 

 : Dimensionless Temperature 

 : Dimensionless time 

Subscripts  
 : Condition of the wall 

 : Free Stream Condition. 
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