
Current Trends in Technology and Science
ISSN : 2279-0535

8thSASTech 2014 Symposium on Advances in Science & Technology-Commission-IV Mashhad, Iran

Copyright © 2014 CTTS.IN, All right reserved

62

A New Model for Software Reliability Evaluation Based on

NHPP with Imperfect Debugging

Shiva Akhtarian

MSc Student, Department of Computer Engineering and Information Technology, Payame Noor University, Iran

sh.akhtarian@gmail.com

TahereYaghoobi

Assistant Professor, Department of Computer Engineering and Information Technology Payame Noor University, Iran

t.yaghoobi@pnu.ac.ir

Abstract — In new software products, the necessity of

high reliability software development is increasingly

important to all software developers and customers.

Software reliability modeling based on Non

Homogenous Poisson Process (NHPP) is one of the

successful methods in predicting software reliability.

One of the most important assumptions in modeling

software reliability is imperfect phenomenon which

describes the probability of introducing new faults to

the software during debugging process. In this paper

a new imperfect model is proposed by considering

complexity and dependency between faults.

Estimating the model parameters has been done by

using failure data sets of four real software projects

through MATLAB software. Comparison of the

proposed model is done with two existing models

using various criteria. The results show that the

proposed model better fits the real data and then

providing more accurate information about the

software quality.

Keywords — Software Reliability, Non Homogenous

Poisson Process, simple and complex faults,

dependency, time delay, imperfect debugging

1. INTRODUCTION
An important approach in evaluating software quality and

performance is to determine the software reliability.

Software reliability defined as the probability of error

free software operation in a specified environment for a

specified time (Yamada, 2014). In the last three decades

various software reliability growth models (SRGMs)1

have been developed. Most of the SRGMs based on

NHPP present the reliability diagram as concave or S-

shaped curve (Goel, 1985; Pham, 2006; Kapur, et al.,

2011; Lai, et al., 2012). If the reliability is uniformly

growth, concave models are used otherwise it would be

S-shaped. In 1985 Goel and Okumoto proposed a

concave model which assumed that total faults in the

software are independent and probability of detecting

faults in a unit of time is constant (Goel, 1985). They also

assumed detected faults are immediately removed and no

new faults are introduced during debugging (perfect

debugging). In an S-shaped model detected faults are

1
Software Reliability Growth Model

immediately removed and perfect debugging is used but

fault detection rate is time dependent (Yamada, et al.,

1983; Yamada, et al., 1984; Yamada, et al., 1985). In lots

of recent researches imperfect debugging is considered in

modeling, which shows the probability of introducing

new faults to the software during fault correction and

removal (Yamada, et al., 1992; Pham, 2006; Pham, 2007;

Gaggarwal, et al., 2011; Gupta, et al., 2011).

In some of developed models detected faults are

categorized according to their dependency or complexity.

Ohba proposed the idea of fault dependency in 1984 by

assuming that independent faults can be removed

immediately after they are detected but dependent faults

cannot be removed until their leading faults are

eliminated (Ohba, 1984). Kapour and Younes in 1995

affected fault dependency into G-O model (Kapur, et al.,

1995). They noticed that time delay effect factor between

detecting and removing dependent faults is negligible. In

studies by Hung and Lin dependent and independent

faults are modeled based on NHPP with some various

times dependent delay functions (Huang, et al., 2004;

Huang, et al., 2006).

Karee and his colleagues proposed an S-shaped model

with fault complexity by categorizing faults as simple

and hard. In their model simple faults can be removed

immediately but they affected two steps of observing and

removing to eliminate hard faults (Kareer, et al., 1990).

Kapur In 1999 developed a model by considering

software testing as a three step process, including

observing, isolating and removing faults. Based on this

assumption, he proposed a model with three types of

faults categorized based on their complexity. In which

simple faults can be removed immediately after they are

detected, hard faults are those that need a time delay

factor between observing and isolating the fault and

complex faults need a time delay effect factor between

observing, isolating and removing the fault (Kapur, et al.,

1999).

In this paper an imperfect model based on both

complexity and dependency of faults is developed.

Software faults are categorized in terms of their

complexity into two types of simple and complex, and

complex faults are classified into independent and

dependent. Then, three different types of faults are

mailto:sh.akhtarian@gmail.com

Current Trends in Technology and Science
ISSN : 2279-0535

8thSASTech 2014 Symposium on Advances in Science & Technology-Commission-IV Mashhad, Iran

Copyright © 2014 CTTS.IN, All right reserved

63

proposed and for each type, an appropriate modeling is

presented based on some assumptions.

In software reliability modeling there are unknown

parameters that can be determined by Maximum

Likelihood Estimation (MLE) or least squared estimation

methods (Zacks, 1992; Pham, 2006). The unknown

parameters of the proposed model are determined by

using four real software fault data sets by MLE. Then

some of statistical criteria are used to compare the

goodness of fit of the new model and two basic models.

The estimated time to stop testing for software is

evaluated by the proposed model.

The remainder of paper is as follows: In Section 2, a

generic NHPP software reliability model is explained.

Section 3 is dedicated to one application of software

reliability estimation, estimating time to stop software

testing. In Section 4, the parameters, assumptions and our

modeling is described in details. The next two sections, 5

and 6are specified to model estimation, and model

validation respectively. The paper is concluded in Section

7.

2. SOFTWARE RELIABILITY MODELING BASED

ON NHPP
The basic assumption in NHPP modeling is that the

failure process is described by the NHPP.

Most of software reliability growth models follow the

general assumptions regarding the fault detection process

which can be considered as follows.

 Detecting / removing faults are modeled by NHPP.

 All faults are independent from each other and they

are equally recognizable.

 The number of faults detected at any time is proper

with the number of remaining faults in the software.

 Each time a failure occurs an error that led to it is

immediately and completely removed and no new

errors introduced in the meantime (perfect

debugging).

Assume that N(t) is the number of detected errors

(failures observed) at time t and m(t) is the mean number

of detected faults until time t, then its Min Value

Function (MVF) is:
n

m t
m t

Pr N t n e n 0,1, 2,
n!

(1)

Where

0

t

m t s ds and is failure intensity

function (number of failures per unit of time).

dm t
λ t

dt
 (2)

Therefore, the overall reliability model based on NHPP is

obtained by solving the following differential equation

with the initial condition m (0) =0:

dm t
λ t b t . a m t

dt
(3)

In which, "a" represents the total number of initial faults

in the software before testing. Expression [a–m(t)] shows

the mean number of remaining faults in the software at

time t, and b(t) is fault detection rate.

General solution for the differential equation 3 is as

follows:
β t β t

m t e [C ab t e dt] (4)

In which:

β t b t dt

And C is the constant of integration.

Finally the software reliability is achieved through the

following formula:
t

0

λ s ds

R t e (5)

Table1 [3] shows details of two basic models for

software reliability, Goel - Okumoto exponential model

and delayed S-shaped model.

Table 1. Details of exponential and delayed s-shape models

Model

name

Mean value function

Fault detection

rate

 1
bt

a e b

Delayed S-

shape

bt
a 1 1 bt e

2

b t
b t

1 bt

3. ESTIMATING TIME TO STOP SOFTWARE

TESTING
Software testing is a costly process, so it's necessary to

terminate it in a suitable time. One of the applications of

estimating software reliability is to determine the

appropriate time to terminate software testing.If the

software reached to an acceptable level of reliability at

the specified time, then decision to terminating the test

can be taken. To achieve this goal, the conditional

reliability function, |R x t is used. This function

assumes that the last failure has occurred at time t and no

new failure happens at time interval , t t x Therefore

(Pham, 2006):

| 0
m t x m t

R x t Pr N t x N t e (6)

4.THE PROPOSED MODEL
In this section, first the model parameters and

assumptions are presented and then, according to the

provided assumptions, the modeling is carried out.

4.1. PARAMETERS OF THE PROPOSED MODEL

a : total number of initial faults in the software.

1
a ,

2
a ,

3
a : total number of initial simple, independent

complex, dependent complex faults.

1 2 3
b , b , b : fault detection rate for Simple, independent

complex, dependent complex faults

1 2 3
α , α , α : fault introduction rate for simple, independent

complex, dependent complex faults.

proportion of simple and complex errors in software

Current Trends in Technology and Science
ISSN : 2279-0535

8thSASTech 2014 Symposium on Advances in Science & Technology-Commission-IV Mashhad, Iran

Copyright © 2014 CTTS.IN, All right reserved

64

: proportion of independent complex and dependent

complex.

1
φ t : time lag for complex independent faults.

2
φ t : time lag for complex dependent faults.

m t : mean value function for total software faults.

1
m t : mean value function for simple faults.

2 1
m t φ t mean value function for independent

complex faults.

3 2
m t φ t : mean value function for the dependent

complex faults.

4.2. ASSUMPTIONS OFTHE PROPOSED MODEL

 Our proposed model assumptions are as follows:

i. Detecting / removing faults is modelled by NHPP.

ii. Software faults are divided into simple and complex

faults. This division was done by considering the

amount of effort needed to remove them.

iii. Simple faults can be corrected and deleted

immediately after detection.

iv. Complex faults may need more effort to be removed.

This kind of fault is considered in dependent and

independent.

v. Independent complex faults need more times than

simple faults to be removed. Therefore the time

delay factor 1φ t is affected to show the amount of

efforts is needed for this type of faults.

vi. Dependent complex faults arise due to the presence

of an independent complex fault. This kind of fault

cannot be removed unless its leading fault is

eliminated. According to the effort required in

removing this type of fault, time delay factor is not

negligible, therefore the latency 2φ t will be

affected

vii. During the debugging process, introducing new

faults is possible to show the imperfect phenomenon.

4.3. MODELING

The total number of detected faults during the time (0, t)

is equal to

(7)
1 2 1 3 2

m t = m t + m t - φ t + m t - φ t

Let a be the total number of initial faults before testing

and
1

a ,
2

a ,
3

a describe total number of initial simple,

independent complex and dependent complex faults

respectively. So we have:

1
a = pa

2
a = 1- p qa

3
a = 1- p 1- q a

Detection and removal process of simple faults follows

the general reliability modeling (Equation 3) with

constant fault detection rate.

Of course time lag to remove faults is negligible and

imperfect debugging is affected by new faults

introduced to software during debugging as shown in

equation (8):

1

1 1 1 1 1

dm t
= b a + α m t - m t

dt
(8)

By solving the differential equation (8), the mean value

function of the detected faults is created as follows

1 1 1 1
-b t 1-α -b t 1-α1

1

1 1

a pa
m t = 1- e = 1- e

1- α 1- α
(9)

Software debugging team requires more time to discover

the causes of complex faults to remove them. For this

type of faults general model of reliability can be used,

however it is necessary to affect time delay factor and

imperfect debugging in removal process.

Assuming that the mean value function of the

independent complex faults is proportional to the

remaining number of independent complex faults and

new faults introduced to the system, so:

2

2 2 2 2 2

dm t
= b a + α m t - m t

dt
(10)

By solving the differential equation (10), in initial

condition
2

0m 0 will have:

2 2
-b t 1-α2

2

2

a
m t = 1- e

1- α

2 2
-b t 1-α

2

1- p qa
= 1- e

1- α
(11)

Time delay factor in debugging of independent complex

faults is considered as ascending function
1

φ t . Thus

the finalequation (12) is obtained:

 Ln 1 + b t
2

φ t =
1

b
2

2 2 2
1-α -b t 1-α

2 1 2

2

1- p qa
m t - φ t = 1- 1+ b t e

1- α
(12)

Based on assumption v, the general modeling of

reliability is not directly applicable on removing

dependent complex faults.

The mean value of dependent complex faults is

proportional to the number of remaining dependent

complex faults, the mean value of independent complex

faults and new introduced faults to the system. Also,

time delay factor φ
2

t and imperfect debugging are

affected to remove this kind of faults. So the differential

equation for modeling these faults is as follows:

3 2 1

3 3 3 3 3

2 3

dm t m t - φ t
= b a + α m t - m t

dt a + a
(13)

By solving equation (13), we obtain

3

3

3

a
m t = ×

1- α
(14)

2 2 2

2

1 12 3 3

2

02 3 2 3

1
1 exp (1

1
)1

1

t

b s
a b s

b s e ds
a a b s

Considering the time required for debugging and

removing complex dependent faults, time delay factor

Current Trends in Technology and Science
ISSN : 2279-0535

8thSASTech 2014 Symposium on Advances in Science & Technology-Commission-IV Mashhad, Iran

Copyright © 2014 CTTS.IN, All right reserved

65

φ
2

t should be affected in Equation (14) for the final

equation of complex dependent faults. So we have:

3 Ln 1 + b t
φ =2 t

b3

3 2
m t - φ t = (15)

2 2
1 1 123 2 3 3 2 2

1 exp (1 1
2

1 1 103 2 3 2 3

t t
a a b s b s

b s e ds

a a b s

According to equation (7), the mean value function of

total software’s faults is obtained by calculating all three

mean value functions.

5. MODEL ESTIMATION
The proposed model is tested on four real software

failure data sets, real-time command and control system

(Ohba, 1984a), IBM (Musa, et al., 1987), OCS (Pham, et

al., 2003) and Misra (Misra, 1983) and its parameters are

estimated by Matlab2012 software. Table (2) presents

estimated parameters for the proposed model,

exponential model and delayed S-shaped model.

Table2.Parameter estimation based on failure datasets

Real time IBM OCS Misra Model

name

 ˆ 150a

 ˆ 0 / 51b

 ˆ 0 / 132b

0 / 013
ˆ 00b

ˆ 0 / 42s

 ˆ 0 / 94q

 ˆ 0 / 031

0 / 012
ˆ 00

 ˆ 0 / 853

 ˆ 71a

 ˆ 0 / 031b

 ˆ 0 / 092b

 ˆ 0 / 993b

 ˆ 0 / 43s

 ˆ 0 / 56q

0 / 011
ˆ 00

0 012
ˆ / 0

0 013
ˆ / 0

 ˆ 380a

 ˆ 0 / 181b

 ˆ 0 / 192b

0 / 013
ˆ 00b

 ˆ 0 / 17s

 ˆ 0 / 34q

0 / 011
ˆ 00

0 / 012
ˆ 00

0 013
ˆ / 0

 ˆ 378a

ˆ 0 / 691b

ˆ 0 / 162b

ˆ 0 / 093b

ˆ 0 / 06s

ˆ 0 / 21q

ˆ 0 / 061

ˆ 0 / 542

ˆ 0 / 993

New

model

 ˆ 142a

 ˆ 0 / 12b

 ˆ 400a

 ˆ 0 / 005b

ˆ 242a

 ˆ 0 / 06b

 ˆ 922a

ˆ 0 / 007b

G-O

model

 ˆ 136a

 ˆ 0 / 28b

 ˆ 71a

 ˆ 0 / 1b

 ˆ 153a

 ˆ 0 / 31b

 ˆ 285a

ˆ 0 / 08b

Delayed
S-

shaped

model

Now using obtained parameters, mean value function and

software reliability can be estimated in a time interval

, 0.1t t . Thus, the time termination of software testing

is specified. Table (3) presents the information of

software testing process obtained by using proposed

model on real-time command and control system from

time 17 to 25 to estimate the software testing time

termination.

Table Obtained information after each test of real-time command and

control system to determine the terminating time of testing process

using proposed model

Value of

Estimated

Mean value

function

Total

number of

estimated

initial

faults

Testing

time (t)

 0 / 703 122 / 178 134 / 218

 0 / 669 126 / 691 195 / 860

 0 / 729 128 / 040 249 / 163

 0 / 879 128 / 998 329 / 759

 0 / 773 131 / 292 132 / 299

0 / 836 131 / 995 189 / 805

 0 / 843 134 / 001 252 / 901

 0 / 864 134 / 997 263 / 681

 0 / 881 135 / 999 149 / 949

6. MODEL VALIDATION
To show the validation of the proposed model

assumptions, we compare it with exponential model and

delayed S-shaped model which are considered as basic

models in predicting software reliability, based on NHPP.

Figures (1) to (4) shows the proposed model's goodness

of fit compared with the exponential model and delay S-

shaped model on all four data sets mentioned in the last

section.

Figure1.proposed model's goodness of fit compared with, Exponential

model and delay S- shaped model on real time command and control

dataset

Figure2.proposed model's goodness of fit compared with, exponential

model and delay S- shaped model on IBM dataset

Current Trends in Technology and Science
ISSN : 2279-0535

8thSASTech 2014 Symposium on Advances in Science & Technology-Commission-IV Mashhad, Iran

Copyright © 2014 CTTS.IN, All right reserved

66

Figure 3.proposed model's goodness of fit compared with, Exponential

model and delay S- shaped model on OCS dataset

Figure 4.proposed model's goodness of fit compared with, Exponential

model and delay S- shaped model on Misra dataset

It can be seen from figures, the proposed model is

properly consistent on data sets.

For accurate model comparison, other criteria can be

used. Three common ones are PRR1 (Pham, et al., 2003),

SSE2 (Pham, 2006) and MSE3 (Pham, 2006), which can

be expressed as follows:

"y" is total number of faults observed at time "t"

according to real dataset and "m(t)" is estimated

cumulative number of faults at time "t" and "n" is the

number of observations.

In model comparison, smaller values for each of three

criteria on the same dataset, represents more appropriate

model.

Table (4) shows the obtained values of criteria for

proposed model, exponential model and delayed S-

shaped model on all four datasets.

1Prediction Ratio Risk
2 Sum of Squared Errors
3
Mean Squared Errors

Table3.values of criteria for proposed model, exponential model and

delayed S-shaped model

Real-time

Command and

Control data

set

IBM data

set

OCS data

set

Misra data set Model

name

117 / 04AIC

0 / 01PRR

130 / 15SSE

5 / 20MSE

82 / 66AIC

0 / 49PRR

29 / 76SSE

1 / 41MSE

128 / 84AIC

0 / 46PRR

739 / 04SSE

19 / 44MSE

205 / 22AIC

0 / 05PRR

707 / 95SSE

18 / 63MSE

New

Model

128 / 96AIC

0 / 64PRR

903 / 27SSE

36 / 13MSE

77 / 71AIC

1 / 04PRR

170 / 82SSE

8 / 13MSE

117 / 07AIC

0 / 30PRR

921 / 88SSE

76 / 82MSE

200 / 75AIC

2 / 06PRR

1 / 6571e 03SSE

 43 / 60MSE

G-O

Model

203 / 74AIC

28 / 51PRR

4 / 2179e 03SSE

168 / 71MS

78 / 04AIC

22 / 22PRR

33 / 88SSE

1 / 61MSE

132 / 33AIC

6 / 29PRR

741 / 74SSE

61 / 81MSE

279 / 74AIC

305 / 94PRR

8 / 6627e 03 SSE

2296MSE

Delayed

S-shaped

Model

According to the results of Table 4,it can be seen thatthe

proposed model has a good fitness on mentioned datasets

and works better than the exponential model and delayed

S-shaped model.

7. CONCLUSION
Software reliability growth models can be used to

determine software performance and control the testing

process of software.

Based on these models, reliability is estimated in

quantitative methods. Some measurements such as

number of initial faults, failure intensity, software

reliability in a specified period of timeand mean time

between failures can be determined by using SRGMs.

By now, various models have been developed by

researchers based on software testing conditions.

New software reliability model proposed in this paper,

categorizes software faults into simple, independent

complex and dependent complex. The model is also

affected by imperfect debugging and time delay factor in

complex faults removal modelling.

By considering new assumptions more realistic model

proposed, which considers both complexity and

dependency of faults in its fault removal modelling.

Imperfect debugging and time delay factor in removing

complex faults are two other important assumptions in

new model. So by making this model more closer to real

software conditions it can estimate software reliability

more accurate than compared basic models.

REFERENCE
[1] S. Yamada, Software reliability modeling:

Fundamentals and Applications.: Springer, 2014.

[2] A. L. Goel, "Software Reliability

Models:Assumptions, Limitations and

applicability," IEEE Trans.on software

engineering, vol. 11, pp. 1411-1423, 1985.

[3] H. Pham, System Software Reliability. London:

Springer-Verlag, 2006.

[4] P. K. Kapur, H. Pham, A. Gupta, and P. C. Jha,

Software Reliability Assessment with or

Applications. London: Springer-Verlag, 2011.

Current Trends in Technology and Science
ISSN : 2279-0535

8thSASTech 2014 Symposium on Advances in Science & Technology-Commission-IV Mashhad, Iran

Copyright © 2014 CTTS.IN, All right reserved

67

[5] R. Lai and M. Garg, "A Detailed Study of NHPP

Software Reliability Models," Journal of Software,

vol. 7, pp. 1296-1306, 2012.

[6] S. Yamada, M. Ohba, and S. Osaki, "S-shaped

Reliability Growth Modeling for Software Error

Detection," IEEE Trans on Reliability, vol. 32, no.

5, pp. 475-484, 1983.

[7] S. Yamada, M. Ohba, and S. Osaki, "S-shaped

Software Reliability Growth Models and their

Applications," IEEE Trans.Reliability, vol. R-33,

pp. 289-292, 1984.

[8] S. Yamada and S. Osaki, "Software reliability

growth modeling: models and applications," IEEE

Trans Softw Eng, pp. 1431-1437, 1985.

[9] S. Yamada, K. Tokunou, and S. Osaki, "S-

Imperfect debugging models with fault

introduction rate for software reliability

assessment," International Journal of Science, vol.

23, no. 12, pp. 2241-2252, 1992.

[10] H. Pham, "An imperfect-debugging fault detection

dependent parameter software," International

Journal of Automation and computing, pp. 325-

328, 2007.

[11] A. Gaggarwal, P. K. Kapur, and A. S. Garmabaki,

"Imperfect Debugging software reliability growth

model for multiple release," in 5th national

conference, India, 2011.

[12] A. Gupta and S. Saxena, "Software Reliability

Estimation Using Yamada delayed S Sape Model

under Imperfect Debugging and Time Lag," in

International Coference on Advanced Computing

& Communication technologies, vol. 5, 2011, pp.

317-319.

[13] M. Ohba, "Software Reliability Analysis Models,"

IBM Journal of Research and Development, vol.

28, pp. 428-443, 1984.

[14] P. K. Kapur and S. Younes, "Software Reliability

Growth Model with error dependency," Elsevier

Science, vol. 35, pp. 273-278, 1995.

[15] C. Y. Huang, C. T. Lin, J. H. Lo, and C. C. Sue,

"Effect of Fault Dependency and Debugging Time

Lag on Software Error Models," IEEE Trans on

Reliability, pp. 243-246, 2004.

[16] C. Y. Huang and C. T. Lin, "Software Reliability

Analysis by Considering Fault Dependency and

Debugging time Lag," IEEE Trans on Reliability,

vol. 55, pp. 436-450, 2006.

[17] N. Kareer, P. K. Kapur, and P. S. Grover, "An S-

shaped software reliability growth model with two

types of errors," Microelectron Reliab, pp. 1085-

1090, 1990.

[18] P. K. Kapur, R. B. Garg, and S. Kumar,

Contributions to hardware and software reliability.

Singapore: Word Scientific, 1999.

[19] S. Zacks, Introduction to Reliability Analysis.:

Springer-Verlag, 1992.

[20] M Ohba, Software reliability analysis models.:

IBM Development, 1984a.

[21] J D Musa, A Lannino, and K Okumoto, Software

Reliability: Measurement, prediction, and

application. New York: Mac Graw-Hill, 1987.

[22] H Pham and C Deng, "Predictive ratio risk

criterion for selecting software reliability models,"

in Ninth International Conf on reliability and

quality in design, 2003.

[23] P. N. Misra, "Software reliability analysis," IBM

System Journal, pp. 262-270, 1983.

[24] H. Pham and C. Deng, "Predictive ratio risk

criterion for selecting software reliability models,"

in Ninth International Conf on reliability and

quality in design, 2003.

