
Current Trends in Technology and Sciences

ISSN : 2275-0535

9th Symposium on Advances in Science & Technology (9thSASTech 2014), Mashad, Iran

Copyright © 2015 CTTS. IN, All right reserved

39

Presentation of a Parallel Algorithm for Nearest Neighbor

Search on GPU Using CUDA

Neda Mohammadi

Shiraz University of Technology, Computer Engineering and IT Department, Shiraz, Fars, Iran,

E-Mail:N. Mohammadi@sutech. ac. ir

Abstract – Nearest Neighbor Search Algorithm has

many applications in various sciences, for example

KNN classification techniques are used often in

industry and in many scientific applications. It has

been applied in areas such as medical imaging,

entropy estimation, data mining, machine learning

and content based image retrieval. The high

computational complexity in nearest neighbor

algorithm is a challenge for runtime. Although

presenting and solving of this problem and for small

data is easy, when the database is large The

fundamental problem in fast processing of data

occurs. In areas such as, data mining where the

nearest neighbor search algorithm is applied for it,

several technologies have been used to classify the

data. Several technologies in order to data

classification are introduced which with increasing

amount of data choosing appropriate technology for

classifying them is important. CUDA technology was

provided by NVIDIA and also this technology

provided an opportunity for developers so that by

using of their system graphics card, data in parallel

they performed minimal cost and easy computational

processing data. The concept of GPGPU and CUDA

technology for nearest neighbor search is used. We

will compare parallelism implementation of this

algorithm on GPU With accessing to it’s shared

memory with serial implementation of algorithm on

CPU and while the program without access to shared

memory on a graphics processing unit runs. It is

shown that Parallel implementation of the algorithm

on GPU with accessing to the shared memory in

compared to the other methods discussed here is

heavy computational processes in parallel method.

Keyword – Nearest Neighbor, CUDA, graphics

processing unit, Shared Memory, Parallelization

1. INTRODUCTION
Nearest Neighbor Search Algorithm is used to find

similar items in many issues. For solving such issues,

Nearest neighbors of an object should be found In a
metric space. It has been applied in areas such as data

mining, entropy estimation[1, 2, 3]. in these areas,

amount of data for processing constantly Increases.

Particularly in data mining[3], Searching for

implementations which can respond to large data

collections is done. Parallel Processing provided a

scalable solution for nearest neighbor search algorithm In

the case of high volumes data. graphics processing
unit(gpu) contains hundreds parallel processor core that

can simultaneously manage thousands of threads. The

purpose of the gpu creation is to effectively fulfillment

required calculations for 3D graphics that often are

simple. cuda provide opportunity for using of gpu‟s

power in parallelization non-graphics computing

processing. Cuda technology can be written in c language

and implemented on graphic processing units so that in

this way, scalable and cost- effectivity solutions provided

for parallel implementation of the heavy computational

processes. we propose a parallel implementation of the

cuda for NN search and evaluate its runtime
performance. Algorithms that are implemented by the

graphics processing unit dependens on various hardware.

All algorithms are implemented on a system by Intel core

2 duo processor 2. 40 GHZ with 3GB memory and

windows 7. the graphics card used is a Nvidia Geforce

9300 MG and expected that Algorithm‟s run on GPU

with CUDA causes enhancement in it‟s speed. The

following, section 2, some related work reviewed,

Section 3 explains Nearest Neighbor Algorithm in more

detail and describes GPU and CUDA. Then describes,

how it is implemented in Serial on CPU and how NN
Algorithm is implemented in Parallel On GPU without

accessing to GPU‟s Shared memory. Section 4 describes

how the NN Algorithm is implemented in parallel with

accessing CUDA shared memory. Results and analysis

are presented in Section 5. Section 6 concludes the paper.

2. RELATED WORK
There are some pervious researches on improving

performance on NN Algorithm[1, 4, 5]. in 2008 a method

for improving algorithm performance is presented[4],

that used a parallel Algorithm for finding K-Nearest

Neighbor in run-time with using CUDA and creates trees

with degree of K, but using of this method has low

scalable. In[1] an algorithm called „brute force‟ for
implementation KNN is proposed, the results indicate

that implementation of KNN with this method is faster

than serial on CPU and also is faster than implementation

using kd-tree. In[5] a randomized algorithm called LSH

is presented that Neighbors are calculated by estimating.

The author has reported that this method reduces the time

complexity but There is little probability that algorithm

in finding nearest neighbor to fail and Does not guarantee

the correct answer. In Here, serial pseudo-code NN

algorithm is used in [1] as a starting point and then in

order to speed enhancement and better performance,

Current Trends in Technology and Sciences

ISSN : 2275-0535

9th Symposium on Advances in Science & Technology (9thSASTech 2014), Mashad, Iran

Copyright © 2015 CTTS. IN, All right reserved

40

algorithm in term of implementation complexity is

parallelized.

3. NEAREST NEIGHBOR SEARCH ALGORITHM
P={i1, i2, i3, …, in} was defined as a set of n points in 3D

space, for each query point q as q € P, NN Algorithm

find nearest neighbor to this query point of this set of

points. This algorithm has great importance in computer

science (pattern recognition, search in multimedia, data

mining)[5]. for calculating distance between the points,
the Euclidean distance is used. Of Course, for calculating

distance, any other method can be used. Figure 1 show

KNN where K=1.

Fig. 1. KNN search problem for k=1. black points is

reference point and red plus is query point. circle shows

nearest point to the query point

serial Pseudocode nearest neighbor search algorithm in

[1] is shown in figure 2.

Figure 2: serial pseudocode NN Search Algoritm

In this Pseudocode Curpoint variable is as a query point

which its closest neighbor should be found. Count

variable expresses the total number of set of points.

The main point in this algorithm is its high time

complexity. With respect to the internal loop nearest

neighbor search for a point of time complexity is

calculated and with regard to external loop, finding the

nearest neighbor operations are performed for all points.

so in figure 2, complexity of algorithm is of order O(N2).
equation 1 was used for calculating distances between

two point in three dimensional coordinate.
Sqrt((x1-x2)

2+(y1-y2)
2+(z1-z2)

2) (1)

3. 1. Parallel Programming

Modern graphics processing units for the production and

processing of high-quality 3D graphics are designed.

These graphics processing units are very common on

personal computers and improve overall system

performance in terms of reducing runtime. In the

graphics processing units a lot of the same calculations

on a number of different data items to be run one after
another(SIMD). For example, it may same computing for

a every pixel in a frame or every vertex in a page be

calculated. Now modern graphics processing units are

including hundreds of processor cores and are able to
manage the thousands of threads Simultaneously [6]. In

November 2006, Nvidia introduced CUDA (Compute

Unified Device Architecture), is a general purpose

parallel computing architecture and provides opportunity

for developers that their C language programs run on

graphics processing units whereas this graphics

processing unit previous was used only for graphic

processes. Advantages such as low cost of graphics

processing units and Easy to learn CUDA has caused it to

be widely used in the scientific community. Some

research shows that Algorithms have been implemented

in parallel with the CUDA is hundreds of times faster
than the serial implementation of this algorithm[1, 4, 7].

3. 2. Parallelism Nearest Neighbor Search Algorithm

The aim is reducing runtime for nearest neighbor search

algorithm using the technology of CUDA. Also

according to advancement of technology and the

availability of modern graphics cards, Conditions is

provided that addition to increasing system response

speed become optimal use of system hardware. The

response time is, the time between the beginning of the

operations finding the nearest neighbor Until the end of

the operation. As already mentioned, Many factors,
including the type and number of processor, graphic

card‟s type, and more importantly, the parallelism of the

program is effective in achieving this goal. According to

the pseudocode in Figure 2 for finding the nearest

neighbors to each point there are two loop that The time

complexity of the serial execution is of the order O(N2).

from this pseudocode can be concluded that finding the

nearest neighbor has good capability For parallelization.

This must be done in a manner that threads

communication overhead with global memory as far as

possible may be reduced and does not overcome on
runtime. The internal loop can not be parallel because the

calculation of the nearest neighbor to a query point is

independent of calculation of The nearest neighbor for

the rest.

3. 3. Parallelism in global memory

According to equation 1, Kernel obtain distance of each

point to query point. There is many way for problem

fraction and giving it for running to threads. So problem

was broken and was given to threads. The number of

threads equal to the number of points of collection. Thus,

each thread is mapped to a point and search other points

in order to find it‟s nearest neighbor.

curPoint is queryPoint

For(int curPoint=0;curPoint<count;curPoint++)

For(int i=0;i<count;i++)

Compute all distance between query curpoint and rj,

j€[1, count]

Current Trends in Technology and Sciences

ISSN : 2275-0535

9th Symposium on Advances in Science & Technology (9thSASTech 2014), Mashad, Iran

Copyright © 2015 CTTS. IN, All right reserved

41

Fig. 3. Pseudocode for parallel execution

 threads accessing to global memory

Now, according to the pseudocode in figure 3 will be

discussed in detail. Points array including three-

Dimentional points coordination in the indices array that

keeps its nearest neighbors. like pseudocode in figure 2
Count variable represents total number of points. when

Points array in main method was initialized by

programmer with random numbers. kernel calculation

nearest neighbor to each point maps to a thread. the

number of points is equal to the number of threads. in

order to evaluation time complexity, implementation of

this algorithm on a graphics processing unit without

accessing to shared memory is compared with condition

that serial algorithm runs on processor. Each block

contains 320 thread that has been set by the programmer.

In For loop each thread is bound to find the point closest
and stores index of nearest neighbor in element of Indices

array. order of complexity in figure 3 due to a for loop is

O(N).

4. SUGGESTED METHOD
One of GPU facilities is shared memory per block.

shared memory size is small, but its speed is high. more

shared memory is used for communication threads of a

block together or storage and retrieval data that threads

need constantly. if this memory does not exist for

communicating threads together or storage and retrieval

of needed data, constantly have to access to GPU‟s

global memory. since speed of global memory is low
causes a sharp reduction in speed of execution whole

program.

4.1. Parallelism using shared memory of graphic

processing unit

Now to describe nearest neighbor algorithm parallelism

using GPU‟s shared memory. Pseudo-code in figure 4,

shared point array is consists of the threads in a block.

every time, kernel transfers a block from global memory

to shared memory. every thread in a block represents a

point of set of points and obtains its nearest point among

shared memory‟s threads within block. in this way, all
blocks are copied in shared memory one after another

and current threads obtain its distance with all points of

set, the procedure is continued as long as each thread

finds its nearest point. During the implementation, shared

memory is shared among block threads. so shared

memory is applied as a rapid method for communication

between threads of a block. It is necessary to notice when

shared memory is applied as a communication and

interaction between threads, The use of shared resources

in parallel programming causes Hazard. Generally,

semaphore is often used for avoiding of hazard.

Fig. 4. Pseudo-code algorithm parallelism by using of

GPU‟s shared memory

Using semaphore causes part of the program runs a serial
that reduce or neutralize the aim of graphic processing

unit which it is algorithm parallelism for increasing speed

of algorithm execution. when two threads want a value of

shared memory to modify in two different value, The

__global__ void FindNearestglobal(Float3*

points, int* indices, int count)

{

if(count<=1) return;
Idx=threadIdx. x+blockIdx. x*blockDim. x;

Determine a defult value for SmallestSoFar

For(i=0;i<count;i++)

 If(i=Idx) continue;

 Calculate Distance reference Point I with

 query point

 if distance is less of smallestSoFar

 smallestSofar=distance

 save I in indices[Idx]

 end If

end For

}

__global__ void FindNearestShared(Float3* points,

int* indices, int count){

__shared__ SharesPoint[blocksize]

Obtain ThreadIndex and save in Idx

Determin a defult value -1 for indexOfNearest

Determin a defult value -1 for distanceToNearest

Define a thisPoint variable

If(Idx< count)

Thispoint=points[Idx]

For each block in grid

{ if threadIdx in currentBlock<count

Copy thread value in sharedPoints Array

__syncthreads()

If(threadIdx< count)

For each thread in block calculate distance

with other threads in block

if(dist<distanceToNearest&& threadIdx

in currentBlock<count && threadIdx in

currentBlock!=idx)

DistanceTonearest=dist;

indexOfnearest=thread in currentBlock

end if

end for

end if

__syncthreads()

End for

If(ind<count)

Indices[idx]=indexOfNearest

}

Current Trends in Technology and Sciences

ISSN : 2275-0535

9th Symposium on Advances in Science & Technology (9thSASTech 2014), Mashad, Iran

Copyright © 2015 CTTS. IN, All right reserved

42

competitive situation arises. In CUDA to avoid

competition and create hazard, instead of semaphore used

sync thread method. This method acts as a barrier, until
all thread of a block reach to this point, any threads in a

block will not pass it.

5. IMPLEMENTATION RESULTS

To evaluate the suggested algorithm, the number of set of

points 100, 2000, 6000, 8000, 10000 are considered and

for each of those sets, program is executed 20 times. As

already mentioned, Points array of Random Numbers in

range [-5000, +5000] is generated. Because these

numbers are often used in real application. Once in

suggested method and two mentioned method in section

3, Algorithm's execution time for a number of different

points in 20 times is measured, Arithmetic mean of each

of these 20 numbers can be considered as the runtime.

Fig. 5. Three method implementation runtime for number

of different set of points

As seen in figure 5, Suggested method for large amount

of data in comparing to another methods has much higher

efficient in terms of time complexity. Parallelism method
by CUDA on the graphics processing unit, in the case the

threads have great access to the global memory and

shared memory is not used, runtime doesn‟t improve. in

order to compare the effectiveness of the suggested

method and serial, the acceleration coefficient is used.

Accelerating coefficient as the ratio of the time required

to solve the problem with serial to the time needed to

solve the problem with the suggested method is defined.

Also acceleration coefficient for the ratio serial time to

the parallel implementation of the algorithm without

access to a GPU‟s shared memory is calculated. Equation
2 is used for calculating the results of the acceleration

coefficient.

S(n)= ts/tp (2)

Fig. 6. Acceleration coefficient for the proposed method

and the parallel without the use of shared memory than
serial methods for different number of points

 6. SUMMERY AND CONCLUSION

According to the obtained results that can be clearly seen,

the suggested algorithm reducing the execution time

especially when the data volume is high has a

considerable impact. As previously mentioned, nearest
neighbor search problem is easily for low-volume data

But when the data size is large, algorithm‟s time

complexity is high. Therefore, the suggested method has

the best implementation in terms of running costs,

efficient use of the hardware and scalability and Unlike

the LSH method returns a definitive answer as nearest

neighbor.

REFERENCE
[1] Garcia, V., Debreuve, E., & Barlaud, M “Fast k

nearest neighbor search using GPU”. In Computer

Vision and Pattern Recognition Workshops,

CVPRW'08. IEEE Computer Society Conference

on, Pp. 1-6. (2008, June).

[2] Nickolls, J., Buck, I., Garland, M., & Skadron, K. .

”Scalable parallel programming with CUDA”. Pp.

40-53. (2008)

[3] Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J.,
Yang, Q., Motoda, H., & Steinberg, D. ” Top 10

algorithms in data mining”. Knowledge and

Information Systems, 14(1), Pp. 1-37. (2008)

[4] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S.,

Stone, S. S., Kirk, D. B., & Hwu, W. M. W

“Optimization principles and application

performance evaluation of a multithreaded GPU

using CUDA”. In Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice

of parallel programming. Pp. 73-82. . (2008,

February).

[5] Nourzad, P, “Find the nearest neighbor in high
dimentional spaces”, The introduction of context-

sensitive Hashing Algorithm. (2010)

[6] CUDA, C. Programming Guide: “CUDA Toolkit

Documentation”.

Current Trends in Technology and Sciences

ISSN : 2275-0535

9th Symposium on Advances in Science & Technology (9thSASTech 2014), Mashad, Iran

Copyright © 2015 CTTS. IN, All right reserved

43

[7] Neumann, A. “ Parallel reduction of

multidimensional arrays for supporting online

analytical processing (olap) on a graphics
processing unit (GPU)”

AUTHOR’S PROFILE

Neda Mohammadi. She is studying for a master's degree

in Shiraz University of Technology. Her research

interests include presentation of solutions for algorithms
parallelism which have high time complexity, CUDA

programing on GPU, web service for transaction

composition

